Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction

[Display omitted] The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-12, Vol.675, p.915-925
Hauptverfasser: Wang, Haibin, Li, Chunlei, Liu, Mengling, Dou, Di, Chen, Luyun, Zhang, Limin, Zhao, Qiuping, Cong, Yuanyuan, Wang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue
container_start_page 915
container_title Journal of colloid and interface science
container_volume 675
creator Wang, Haibin
Li, Chunlei
Liu, Mengling
Dou, Di
Chen, Luyun
Zhang, Limin
Zhao, Qiuping
Cong, Yuanyuan
Wang, Yi
description [Display omitted] The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalysts, however, the vital role of solvent effect on the phase interfaces is often overlooked. Here, we successfully developed an electrocatalyst in which the ordered PtCo alloy anchors on the cobalt (Co) single-atoms/clusters decorated support (Co1,nNC) and its surface is further optimized using hydrophobic ionic liquid (IL). Experimental studies and theoretical calculations indicate that compressive stress on Pt lattice contributed by intrinsic structure and the local hydrophobicity caused by IL on the surface can suppress the stabilization of *OH on Pt. This synergistic effect affords outstanding catalytic performance, exhibiting a half-wave potential (E1/2) of 0.916 V vs. RHE and a mass activity (MA) of 1350.3 mA mgPt−1 in 0.1 mol/L perchloric acid (0.1 M HClO4) electrolyte, much better than the commercial Pt/C (0.849 V vs. RHE and 145.5 mA mgPt−1 for E1/2 and MA, respectively). Moreover, the E1/2 of IL-PtCo/Co1,nNC only lost 5 mV after 10,000 cyclic voltammetry (CV) cycles due to a strong and synergistic contact of the intermetallic PtCo alloy with the Co1,nNC support and IL. This research provides an effective method for designing efficient electrocatalysts by combining intrinsic structure and surface modification.
doi_str_mv 10.1016/j.jcis.2024.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079956315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724015169</els_id><sourcerecordid>3079956315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-5c7e83c0af5ca6ad32d03def827a8f084779ea260cd6cbe871ec7d7de9abfc553</originalsourceid><addsrcrecordid>eNp9kcuO1DAQRS0EYpqBH2CBvGST4EcnTiQ2aDQ8pJHYwNpyl8vdbiV2YzsD_Qd8Ns70wJJVValOXenWJeQ1Zy1nvH93bI_gcyuY2LZMtYyLJ2TD2dg1ijP5lGwYE7wZ1aiuyIucj4xx3nXjc3Ilx7oSW74hv2_D3gfE5MOe7mI5UB9KHbIHCgeTDJS6y6WOJlg6RTATnT2kiOHepxhmDIVGR0-TKT4sM82-YKYl_jTJ0oPfH6YzRec8-Afy13mPgSa0CxQf1848NC_JM2emjK8e6zX5_vH2283n5u7rpy83H-4aEFKVpgOFgwRmXAemN1YKy6RFNwhlBseGrVIjGtEzsD3scFAcQVllcTQ7B10nr8nbi-4pxR8L5qJnnwGnyQSMS9aSqXHseslXVFzQ6jbnhE6fkp9NOmvO9JqAPuo1Ab0moJnSNYF69OZRf9nNaP-d_H15Bd5fAKwu7z0mndfXAFqfEIq20f9P_w-HR5y0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079956315</pqid></control><display><type>article</type><title>Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Haibin ; Li, Chunlei ; Liu, Mengling ; Dou, Di ; Chen, Luyun ; Zhang, Limin ; Zhao, Qiuping ; Cong, Yuanyuan ; Wang, Yi</creator><creatorcontrib>Wang, Haibin ; Li, Chunlei ; Liu, Mengling ; Dou, Di ; Chen, Luyun ; Zhang, Limin ; Zhao, Qiuping ; Cong, Yuanyuan ; Wang, Yi</creatorcontrib><description>[Display omitted] The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalysts, however, the vital role of solvent effect on the phase interfaces is often overlooked. Here, we successfully developed an electrocatalyst in which the ordered PtCo alloy anchors on the cobalt (Co) single-atoms/clusters decorated support (Co1,nNC) and its surface is further optimized using hydrophobic ionic liquid (IL). Experimental studies and theoretical calculations indicate that compressive stress on Pt lattice contributed by intrinsic structure and the local hydrophobicity caused by IL on the surface can suppress the stabilization of *OH on Pt. This synergistic effect affords outstanding catalytic performance, exhibiting a half-wave potential (E1/2) of 0.916 V vs. RHE and a mass activity (MA) of 1350.3 mA mgPt−1 in 0.1 mol/L perchloric acid (0.1 M HClO4) electrolyte, much better than the commercial Pt/C (0.849 V vs. RHE and 145.5 mA mgPt−1 for E1/2 and MA, respectively). Moreover, the E1/2 of IL-PtCo/Co1,nNC only lost 5 mV after 10,000 cyclic voltammetry (CV) cycles due to a strong and synergistic contact of the intermetallic PtCo alloy with the Co1,nNC support and IL. This research provides an effective method for designing efficient electrocatalysts by combining intrinsic structure and surface modification.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.07.012</identifier><identifier>PMID: 39002241</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Intrinsic structure ; Ionic liquid ; Local hydrophobicity ; Oxygen reduction reaction ; Platinum</subject><ispartof>Journal of colloid and interface science, 2024-12, Vol.675, p.915-925</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-5c7e83c0af5ca6ad32d03def827a8f084779ea260cd6cbe871ec7d7de9abfc553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.07.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39002241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Li, Chunlei</creatorcontrib><creatorcontrib>Liu, Mengling</creatorcontrib><creatorcontrib>Dou, Di</creatorcontrib><creatorcontrib>Chen, Luyun</creatorcontrib><creatorcontrib>Zhang, Limin</creatorcontrib><creatorcontrib>Zhao, Qiuping</creatorcontrib><creatorcontrib>Cong, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><title>Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalysts, however, the vital role of solvent effect on the phase interfaces is often overlooked. Here, we successfully developed an electrocatalyst in which the ordered PtCo alloy anchors on the cobalt (Co) single-atoms/clusters decorated support (Co1,nNC) and its surface is further optimized using hydrophobic ionic liquid (IL). Experimental studies and theoretical calculations indicate that compressive stress on Pt lattice contributed by intrinsic structure and the local hydrophobicity caused by IL on the surface can suppress the stabilization of *OH on Pt. This synergistic effect affords outstanding catalytic performance, exhibiting a half-wave potential (E1/2) of 0.916 V vs. RHE and a mass activity (MA) of 1350.3 mA mgPt−1 in 0.1 mol/L perchloric acid (0.1 M HClO4) electrolyte, much better than the commercial Pt/C (0.849 V vs. RHE and 145.5 mA mgPt−1 for E1/2 and MA, respectively). Moreover, the E1/2 of IL-PtCo/Co1,nNC only lost 5 mV after 10,000 cyclic voltammetry (CV) cycles due to a strong and synergistic contact of the intermetallic PtCo alloy with the Co1,nNC support and IL. This research provides an effective method for designing efficient electrocatalysts by combining intrinsic structure and surface modification.</description><subject>Intrinsic structure</subject><subject>Ionic liquid</subject><subject>Local hydrophobicity</subject><subject>Oxygen reduction reaction</subject><subject>Platinum</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcuO1DAQRS0EYpqBH2CBvGST4EcnTiQ2aDQ8pJHYwNpyl8vdbiV2YzsD_Qd8Ns70wJJVValOXenWJeQ1Zy1nvH93bI_gcyuY2LZMtYyLJ2TD2dg1ijP5lGwYE7wZ1aiuyIucj4xx3nXjc3Ilx7oSW74hv2_D3gfE5MOe7mI5UB9KHbIHCgeTDJS6y6WOJlg6RTATnT2kiOHepxhmDIVGR0-TKT4sM82-YKYl_jTJ0oPfH6YzRec8-Afy13mPgSa0CxQf1848NC_JM2emjK8e6zX5_vH2283n5u7rpy83H-4aEFKVpgOFgwRmXAemN1YKy6RFNwhlBseGrVIjGtEzsD3scFAcQVllcTQ7B10nr8nbi-4pxR8L5qJnnwGnyQSMS9aSqXHseslXVFzQ6jbnhE6fkp9NOmvO9JqAPuo1Ab0moJnSNYF69OZRf9nNaP-d_H15Bd5fAKwu7z0mndfXAFqfEIq20f9P_w-HR5y0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Haibin</creator><creator>Li, Chunlei</creator><creator>Liu, Mengling</creator><creator>Dou, Di</creator><creator>Chen, Luyun</creator><creator>Zhang, Limin</creator><creator>Zhao, Qiuping</creator><creator>Cong, Yuanyuan</creator><creator>Wang, Yi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction</title><author>Wang, Haibin ; Li, Chunlei ; Liu, Mengling ; Dou, Di ; Chen, Luyun ; Zhang, Limin ; Zhao, Qiuping ; Cong, Yuanyuan ; Wang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-5c7e83c0af5ca6ad32d03def827a8f084779ea260cd6cbe871ec7d7de9abfc553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Intrinsic structure</topic><topic>Ionic liquid</topic><topic>Local hydrophobicity</topic><topic>Oxygen reduction reaction</topic><topic>Platinum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Li, Chunlei</creatorcontrib><creatorcontrib>Liu, Mengling</creatorcontrib><creatorcontrib>Dou, Di</creatorcontrib><creatorcontrib>Chen, Luyun</creatorcontrib><creatorcontrib>Zhang, Limin</creatorcontrib><creatorcontrib>Zhao, Qiuping</creatorcontrib><creatorcontrib>Cong, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haibin</au><au>Li, Chunlei</au><au>Liu, Mengling</au><au>Dou, Di</au><au>Chen, Luyun</au><au>Zhang, Limin</au><au>Zhao, Qiuping</au><au>Cong, Yuanyuan</au><au>Wang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-12</date><risdate>2024</risdate><volume>675</volume><spage>915</spage><epage>925</epage><pages>915-925</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalysts, however, the vital role of solvent effect on the phase interfaces is often overlooked. Here, we successfully developed an electrocatalyst in which the ordered PtCo alloy anchors on the cobalt (Co) single-atoms/clusters decorated support (Co1,nNC) and its surface is further optimized using hydrophobic ionic liquid (IL). Experimental studies and theoretical calculations indicate that compressive stress on Pt lattice contributed by intrinsic structure and the local hydrophobicity caused by IL on the surface can suppress the stabilization of *OH on Pt. This synergistic effect affords outstanding catalytic performance, exhibiting a half-wave potential (E1/2) of 0.916 V vs. RHE and a mass activity (MA) of 1350.3 mA mgPt−1 in 0.1 mol/L perchloric acid (0.1 M HClO4) electrolyte, much better than the commercial Pt/C (0.849 V vs. RHE and 145.5 mA mgPt−1 for E1/2 and MA, respectively). Moreover, the E1/2 of IL-PtCo/Co1,nNC only lost 5 mV after 10,000 cyclic voltammetry (CV) cycles due to a strong and synergistic contact of the intermetallic PtCo alloy with the Co1,nNC support and IL. This research provides an effective method for designing efficient electrocatalysts by combining intrinsic structure and surface modification.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39002241</pmid><doi>10.1016/j.jcis.2024.07.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-12, Vol.675, p.915-925
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3079956315
source Elsevier ScienceDirect Journals Complete
subjects Intrinsic structure
Ionic liquid
Local hydrophobicity
Oxygen reduction reaction
Platinum
title Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20both%20intrinsic%20characteristic%20and%20local%20microenvironment%20of%20platinum%20sites%20toward%20highly%20efficient%20oxygen%20reduction%20reaction&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Haibin&rft.date=2024-12&rft.volume=675&rft.spage=915&rft.epage=925&rft.pages=915-925&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.07.012&rft_dat=%3Cproquest_cross%3E3079956315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079956315&rft_id=info:pmid/39002241&rft_els_id=S0021979724015169&rfr_iscdi=true