Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder

Background Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. Objective The aim was to develop a fully automated and noise‐resistant smartphone‐based system that can unobtrusively screen for prodroma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Movement disorders 2024-10, Vol.39 (10), p.1752-1762
Hauptverfasser: Illner, Vojtěch, Novotný, Michal, Kouba, Tomáš, Tykalová, Tereza, Šimek, Michal, Sovka, Pavel, Švihlík, Jan, Růžička, Evžen, Šonka, Karel, Dušek, Petr, Rusz, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1762
container_issue 10
container_start_page 1752
container_title Movement disorders
container_volume 39
creator Illner, Vojtěch
Novotný, Michal
Kouba, Tomáš
Tykalová, Tereza
Šimek, Michal
Sovka, Pavel
Švihlík, Jan
Růžička, Evžen
Šonka, Karel
Dušek, Petr
Rusz, Jan
description Background Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. Objective The aim was to develop a fully automated and noise‐resistant smartphone‐based system that can unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid eye movement sleep behavior disorder (iRBD) in a real‐world scenario. Methods This cross‐sectional study assessed regular, everyday voice call data from individuals with iRBD compared to early PD patients and healthy controls via a developed smartphone application. The participants also performed an active, regular reading of a short passage on their smartphone. Smartphone data were continuously collected for up to 3 months after the standard in‐person assessments at the clinic. Results A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted from 72 participants, comprising 21 iRBD patients, 26 PD patients, and 25 controls. With a high area under the curve of 0.85 between iRBD patients and controls, the combination of passive and active smartphone data provided a comparable or even more sensitive evaluation than laboratory examination using a high‐quality microphone. The most sensitive features to induce prodromal neurodegeneration in iRBD included imprecise vowel articulation during phone calls (P = 0.03) and monopitch in reading (P = 0.05). Eighteen minutes of speech corresponding to approximately nine calls was sufficient to obtain the best sensitivity for the screening. Conclusion We consider the developed tool widely applicable to deep longitudinal digital phenotyping data with future applications in neuroprotective trials, deep brain stimulation optimization, neuropsychiatry, speech therapy, population screening, and beyond. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
doi_str_mv 10.1002/mds.29921
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079860328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079860328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2781-6f8ff8bf360c7ee6e7ec7d4641b9bae116005b9f34b84a26ff192017dfb8085b3</originalsourceid><addsrcrecordid>eNp10cFOGzEQBmALUZFAe-AFkCUu9LDgsbNe7xFCoJWCipqWq-XdHSsOu-vFTlLl7WsayqFSTzOHT79G8xNyCuwSGONXXRMveVlyOCBjyAVkiufFIRkzpfJMgMpH5DjGFWMAOcgjMhJl2qWQY9ItOhPWw9L3SJ-8q5FOTdtG-hj81jVIZya0O3rjfGLPGCL1lj6m1fXR9y521PX0uxlcQ2c7pA9-ix32a7poEQd6g0uzdT7QWxd9aDB8JB-saSN-epsn5Ofd7Mf0Szb_dv91ej3Pal4oyKRV1qrKCsnqAlFigXXRTOQEqrIyCCAZy6vSikmlJoZLa6HkDIrGVoqpvBIn5GKfOwT_ssG41p2LNbat6dFvohasKJVkgqtEz_-hK78JfbpOCwAFBeMCkvq8V3XwMQa0egguvWSngenXDnTqQP_pINmzt8RN1WHzLv8-PYGrPfjlWtz9P0k_3C72kb8BzaaQRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118170231</pqid></control><display><type>article</type><title>Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Illner, Vojtěch ; Novotný, Michal ; Kouba, Tomáš ; Tykalová, Tereza ; Šimek, Michal ; Sovka, Pavel ; Švihlík, Jan ; Růžička, Evžen ; Šonka, Karel ; Dušek, Petr ; Rusz, Jan</creator><creatorcontrib>Illner, Vojtěch ; Novotný, Michal ; Kouba, Tomáš ; Tykalová, Tereza ; Šimek, Michal ; Sovka, Pavel ; Švihlík, Jan ; Růžička, Evžen ; Šonka, Karel ; Dušek, Petr ; Rusz, Jan</creatorcontrib><description>Background Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. Objective The aim was to develop a fully automated and noise‐resistant smartphone‐based system that can unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid eye movement sleep behavior disorder (iRBD) in a real‐world scenario. Methods This cross‐sectional study assessed regular, everyday voice call data from individuals with iRBD compared to early PD patients and healthy controls via a developed smartphone application. The participants also performed an active, regular reading of a short passage on their smartphone. Smartphone data were continuously collected for up to 3 months after the standard in‐person assessments at the clinic. Results A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted from 72 participants, comprising 21 iRBD patients, 26 PD patients, and 25 controls. With a high area under the curve of 0.85 between iRBD patients and controls, the combination of passive and active smartphone data provided a comparable or even more sensitive evaluation than laboratory examination using a high‐quality microphone. The most sensitive features to induce prodromal neurodegeneration in iRBD included imprecise vowel articulation during phone calls (P = 0.03) and monopitch in reading (P = 0.05). Eighteen minutes of speech corresponding to approximately nine calls was sufficient to obtain the best sensitivity for the screening. Conclusion We consider the developed tool widely applicable to deep longitudinal digital phenotyping data with future applications in neuroprotective trials, deep brain stimulation optimization, neuropsychiatry, speech therapy, population screening, and beyond. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</description><identifier>ISSN: 0885-3185</identifier><identifier>ISSN: 1531-8257</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.29921</identifier><identifier>PMID: 39001636</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Basal ganglia ; Behavior disorders ; Calling behavior ; Central nervous system diseases ; Clinical trials ; Deep brain stimulation ; Eye movements ; machine learning ; Movement disorders ; Neurodegeneration ; Neurodegenerative diseases ; Neuroprotection ; Parkinson's disease ; Phenotyping ; prodromal synucleinopathy biomarker ; REM sleep ; Sensitivity analysis ; Sleep disorders ; Smartphones ; Speech ; wearables</subject><ispartof>Movement disorders, 2024-10, Vol.39 (10), p.1752-1762</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2781-6f8ff8bf360c7ee6e7ec7d4641b9bae116005b9f34b84a26ff192017dfb8085b3</cites><orcidid>0000-0002-4893-9661 ; 0000-0003-4877-9642 ; 0000-0002-1036-3054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.29921$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.29921$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39001636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Illner, Vojtěch</creatorcontrib><creatorcontrib>Novotný, Michal</creatorcontrib><creatorcontrib>Kouba, Tomáš</creatorcontrib><creatorcontrib>Tykalová, Tereza</creatorcontrib><creatorcontrib>Šimek, Michal</creatorcontrib><creatorcontrib>Sovka, Pavel</creatorcontrib><creatorcontrib>Švihlík, Jan</creatorcontrib><creatorcontrib>Růžička, Evžen</creatorcontrib><creatorcontrib>Šonka, Karel</creatorcontrib><creatorcontrib>Dušek, Petr</creatorcontrib><creatorcontrib>Rusz, Jan</creatorcontrib><title>Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder</title><title>Movement disorders</title><addtitle>Mov Disord</addtitle><description>Background Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. Objective The aim was to develop a fully automated and noise‐resistant smartphone‐based system that can unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid eye movement sleep behavior disorder (iRBD) in a real‐world scenario. Methods This cross‐sectional study assessed regular, everyday voice call data from individuals with iRBD compared to early PD patients and healthy controls via a developed smartphone application. The participants also performed an active, regular reading of a short passage on their smartphone. Smartphone data were continuously collected for up to 3 months after the standard in‐person assessments at the clinic. Results A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted from 72 participants, comprising 21 iRBD patients, 26 PD patients, and 25 controls. With a high area under the curve of 0.85 between iRBD patients and controls, the combination of passive and active smartphone data provided a comparable or even more sensitive evaluation than laboratory examination using a high‐quality microphone. The most sensitive features to induce prodromal neurodegeneration in iRBD included imprecise vowel articulation during phone calls (P = 0.03) and monopitch in reading (P = 0.05). Eighteen minutes of speech corresponding to approximately nine calls was sufficient to obtain the best sensitivity for the screening. Conclusion We consider the developed tool widely applicable to deep longitudinal digital phenotyping data with future applications in neuroprotective trials, deep brain stimulation optimization, neuropsychiatry, speech therapy, population screening, and beyond. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</description><subject>Basal ganglia</subject><subject>Behavior disorders</subject><subject>Calling behavior</subject><subject>Central nervous system diseases</subject><subject>Clinical trials</subject><subject>Deep brain stimulation</subject><subject>Eye movements</subject><subject>machine learning</subject><subject>Movement disorders</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neuroprotection</subject><subject>Parkinson's disease</subject><subject>Phenotyping</subject><subject>prodromal synucleinopathy biomarker</subject><subject>REM sleep</subject><subject>Sensitivity analysis</subject><subject>Sleep disorders</subject><subject>Smartphones</subject><subject>Speech</subject><subject>wearables</subject><issn>0885-3185</issn><issn>1531-8257</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10cFOGzEQBmALUZFAe-AFkCUu9LDgsbNe7xFCoJWCipqWq-XdHSsOu-vFTlLl7WsayqFSTzOHT79G8xNyCuwSGONXXRMveVlyOCBjyAVkiufFIRkzpfJMgMpH5DjGFWMAOcgjMhJl2qWQY9ItOhPWw9L3SJ-8q5FOTdtG-hj81jVIZya0O3rjfGLPGCL1lj6m1fXR9y521PX0uxlcQ2c7pA9-ix32a7poEQd6g0uzdT7QWxd9aDB8JB-saSN-epsn5Ofd7Mf0Szb_dv91ej3Pal4oyKRV1qrKCsnqAlFigXXRTOQEqrIyCCAZy6vSikmlJoZLa6HkDIrGVoqpvBIn5GKfOwT_ssG41p2LNbat6dFvohasKJVkgqtEz_-hK78JfbpOCwAFBeMCkvq8V3XwMQa0egguvWSngenXDnTqQP_pINmzt8RN1WHzLv8-PYGrPfjlWtz9P0k_3C72kb8BzaaQRg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Illner, Vojtěch</creator><creator>Novotný, Michal</creator><creator>Kouba, Tomáš</creator><creator>Tykalová, Tereza</creator><creator>Šimek, Michal</creator><creator>Sovka, Pavel</creator><creator>Švihlík, Jan</creator><creator>Růžička, Evžen</creator><creator>Šonka, Karel</creator><creator>Dušek, Petr</creator><creator>Rusz, Jan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4893-9661</orcidid><orcidid>https://orcid.org/0000-0003-4877-9642</orcidid><orcidid>https://orcid.org/0000-0002-1036-3054</orcidid></search><sort><creationdate>202410</creationdate><title>Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder</title><author>Illner, Vojtěch ; Novotný, Michal ; Kouba, Tomáš ; Tykalová, Tereza ; Šimek, Michal ; Sovka, Pavel ; Švihlík, Jan ; Růžička, Evžen ; Šonka, Karel ; Dušek, Petr ; Rusz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2781-6f8ff8bf360c7ee6e7ec7d4641b9bae116005b9f34b84a26ff192017dfb8085b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basal ganglia</topic><topic>Behavior disorders</topic><topic>Calling behavior</topic><topic>Central nervous system diseases</topic><topic>Clinical trials</topic><topic>Deep brain stimulation</topic><topic>Eye movements</topic><topic>machine learning</topic><topic>Movement disorders</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neuroprotection</topic><topic>Parkinson's disease</topic><topic>Phenotyping</topic><topic>prodromal synucleinopathy biomarker</topic><topic>REM sleep</topic><topic>Sensitivity analysis</topic><topic>Sleep disorders</topic><topic>Smartphones</topic><topic>Speech</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illner, Vojtěch</creatorcontrib><creatorcontrib>Novotný, Michal</creatorcontrib><creatorcontrib>Kouba, Tomáš</creatorcontrib><creatorcontrib>Tykalová, Tereza</creatorcontrib><creatorcontrib>Šimek, Michal</creatorcontrib><creatorcontrib>Sovka, Pavel</creatorcontrib><creatorcontrib>Švihlík, Jan</creatorcontrib><creatorcontrib>Růžička, Evžen</creatorcontrib><creatorcontrib>Šonka, Karel</creatorcontrib><creatorcontrib>Dušek, Petr</creatorcontrib><creatorcontrib>Rusz, Jan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illner, Vojtěch</au><au>Novotný, Michal</au><au>Kouba, Tomáš</au><au>Tykalová, Tereza</au><au>Šimek, Michal</au><au>Sovka, Pavel</au><au>Švihlík, Jan</au><au>Růžička, Evžen</au><au>Šonka, Karel</au><au>Dušek, Petr</au><au>Rusz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov Disord</addtitle><date>2024-10</date><risdate>2024</risdate><volume>39</volume><issue>10</issue><spage>1752</spage><epage>1762</epage><pages>1752-1762</pages><issn>0885-3185</issn><issn>1531-8257</issn><eissn>1531-8257</eissn><abstract>Background Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. Objective The aim was to develop a fully automated and noise‐resistant smartphone‐based system that can unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid eye movement sleep behavior disorder (iRBD) in a real‐world scenario. Methods This cross‐sectional study assessed regular, everyday voice call data from individuals with iRBD compared to early PD patients and healthy controls via a developed smartphone application. The participants also performed an active, regular reading of a short passage on their smartphone. Smartphone data were continuously collected for up to 3 months after the standard in‐person assessments at the clinic. Results A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted from 72 participants, comprising 21 iRBD patients, 26 PD patients, and 25 controls. With a high area under the curve of 0.85 between iRBD patients and controls, the combination of passive and active smartphone data provided a comparable or even more sensitive evaluation than laboratory examination using a high‐quality microphone. The most sensitive features to induce prodromal neurodegeneration in iRBD included imprecise vowel articulation during phone calls (P = 0.03) and monopitch in reading (P = 0.05). Eighteen minutes of speech corresponding to approximately nine calls was sufficient to obtain the best sensitivity for the screening. Conclusion We consider the developed tool widely applicable to deep longitudinal digital phenotyping data with future applications in neuroprotective trials, deep brain stimulation optimization, neuropsychiatry, speech therapy, population screening, and beyond. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39001636</pmid><doi>10.1002/mds.29921</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4893-9661</orcidid><orcidid>https://orcid.org/0000-0003-4877-9642</orcidid><orcidid>https://orcid.org/0000-0002-1036-3054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3185
ispartof Movement disorders, 2024-10, Vol.39 (10), p.1752-1762
issn 0885-3185
1531-8257
1531-8257
language eng
recordid cdi_proquest_miscellaneous_3079860328
source Wiley Online Library Journals Frontfile Complete
subjects Basal ganglia
Behavior disorders
Calling behavior
Central nervous system diseases
Clinical trials
Deep brain stimulation
Eye movements
machine learning
Movement disorders
Neurodegeneration
Neurodegenerative diseases
Neuroprotection
Parkinson's disease
Phenotyping
prodromal synucleinopathy biomarker
REM sleep
Sensitivity analysis
Sleep disorders
Smartphones
Speech
wearables
title Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smartphone%20Voice%20Calls%20Provide%20Early%20Biomarkers%20of%20Parkinsonism%20in%20Rapid%20Eye%20Movement%20Sleep%20Behavior%20Disorder&rft.jtitle=Movement%20disorders&rft.au=Illner,%20Vojt%C4%9Bch&rft.date=2024-10&rft.volume=39&rft.issue=10&rft.spage=1752&rft.epage=1762&rft.pages=1752-1762&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.29921&rft_dat=%3Cproquest_cross%3E3079860328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118170231&rft_id=info:pmid/39001636&rfr_iscdi=true