Boosting the Anti‐Helicobacter Efficacy of Azithromycin through Natural Compounds: Insights From In Vitro, In Vivo, Histopathological, and Molecular Docking Investigations

ABSTRACT Background Antimicrobial‐resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin‐resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Helicobacter (Cambridge, Mass.) Mass.), 2024-07, Vol.29 (4), p.e13110-n/a
Hauptverfasser: Bendary, Mahmoud M., Elmanakhly, Arwa R., Mosallam, Farag M., Alblwi, Noaf Abdullah N., Mosbah, Rasha A., Alshareef, Walaa A., Selim, Heba M. R. M., Alhomrani, Majid, Alamri, Abdulhakeem S., Safwat, Nesreen A., Hamdan, Ahmed M. E., Elshimy, Rana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e13110
container_title Helicobacter (Cambridge, Mass.)
container_volume 29
creator Bendary, Mahmoud M.
Elmanakhly, Arwa R.
Mosallam, Farag M.
Alblwi, Noaf Abdullah N.
Mosbah, Rasha A.
Alshareef, Walaa A.
Selim, Heba M. R. M.
Alhomrani, Majid
Alamri, Abdulhakeem S.
Safwat, Nesreen A.
Hamdan, Ahmed M. E.
Elshimy, Rana
description ABSTRACT Background Antimicrobial‐resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin‐resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti‐Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano‐gold emulsion, and curcumin nanoemulsion. Methods The antimicrobial activities of the investigated compounds, both individually and in combination with other anti‐Helicobacter drugs, were evaluated. Their antibiofilm and anti‐virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. Results We observed high anti‐Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values
doi_str_mv 10.1111/hel.13110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079860030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079860030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2430-aa588130e70cf8a2146a32b2ffbcdfef235c52e8bf8001e2b2bec967f02b20c63</originalsourceid><addsrcrecordid>eNp1kU-O0zAYxS0EYoaBBRdAltiANJmx4_xx2JXSoZUKbIBt5Lh24sGxi-0MKiuOwBG4AXfgKJyEr7SwQMIbP-v76fnpewg9pOSCwrkclL2gjFJyC53SMmdZyWp-GzThLCsYb07QvRivCSElK5q76IQ1hNCKFafo-3PvYzKux2lQeOaS-fnl61JZI30nZFIBL7Q2Usgd9hrPPps0BD_upHF4r6Z-wK9FmoKweO7HrZ_cJj7DKxdNP6SIrwCG149v700K_vwob0AtTUx-K9Lgre_hA3uOhdvgV94qOVkR8AsvP-xzrdyNgoS9SMa7eB_d0cJG9eB4n6F3V4u382W2fvNyNZ-tM5kXjGRClJxTRlRNpOYip0UlWN7lWndyo5XOWSnLXPFOc9iEgkmnZFPVmoAksmJn6MnBdxv8xwkCtKOJUlkrnPJTbBmpG14Rwgigj_9Br_0UHKQDqqmrsq4pB-rpgZLBxxiUbrfBjCLsWkrafYsttNj-bhHYR0fHqRvV5i_5pzYALg_AJ2PV7v9O7XKxPlj-Akgvq5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097657718</pqid></control><display><type>article</type><title>Boosting the Anti‐Helicobacter Efficacy of Azithromycin through Natural Compounds: Insights From In Vitro, In Vivo, Histopathological, and Molecular Docking Investigations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bendary, Mahmoud M. ; Elmanakhly, Arwa R. ; Mosallam, Farag M. ; Alblwi, Noaf Abdullah N. ; Mosbah, Rasha A. ; Alshareef, Walaa A. ; Selim, Heba M. R. M. ; Alhomrani, Majid ; Alamri, Abdulhakeem S. ; Safwat, Nesreen A. ; Hamdan, Ahmed M. E. ; Elshimy, Rana</creator><creatorcontrib>Bendary, Mahmoud M. ; Elmanakhly, Arwa R. ; Mosallam, Farag M. ; Alblwi, Noaf Abdullah N. ; Mosbah, Rasha A. ; Alshareef, Walaa A. ; Selim, Heba M. R. M. ; Alhomrani, Majid ; Alamri, Abdulhakeem S. ; Safwat, Nesreen A. ; Hamdan, Ahmed M. E. ; Elshimy, Rana</creatorcontrib><description>ABSTRACT Background Antimicrobial‐resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin‐resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti‐Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano‐gold emulsion, and curcumin nanoemulsion. Methods The antimicrobial activities of the investigated compounds, both individually and in combination with other anti‐Helicobacter drugs, were evaluated. Their antibiofilm and anti‐virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. Results We observed high anti‐Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values &lt;0.5. The curcumin nanoemulsion was the most active anti‐biofilm and anti‐virulence compound among the examined substances. The biofilm‐correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change &lt;1) post‐treatment with curcumin nanoemulsion. On the protein level, the anti‐virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. Conclusion The anti‐Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub‐MIC levels could enhance the anti‐Helicobacter activity of azithromycin and exhibit anti‐virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.</description><identifier>ISSN: 1083-4389</identifier><identifier>ISSN: 1523-5378</identifier><identifier>EISSN: 1523-5378</identifier><identifier>DOI: 10.1111/hel.13110</identifier><identifier>PMID: 39001634</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; anti‐biofilm ; anti‐Helicobacter ; anti‐virulence ; Azithromycin ; Azithromycin - chemistry ; Azithromycin - pharmacology ; Biofilms ; Biofilms - drug effects ; Biological Products - chemistry ; Biological Products - pharmacology ; Curcumin ; Curcumin - chemistry ; Curcumin - pharmacology ; curcumin nanoemulsion ; Drug development ; Drug Synergism ; Effectiveness ; Emulsions ; Female ; FICI ; Formulations ; Genes ; H. pylori ; Helicobacter ; Helicobacter Infections - drug therapy ; Helicobacter Infections - microbiology ; Helicobacter pylori - drug effects ; Helicobacter pylori - genetics ; In vivo methods and tests ; Mice ; Microbial Sensitivity Tests ; Minimum inhibitory concentration ; Molecular docking ; Molecular Docking Simulation ; Nanoemulsions ; Protein folding ; Public health ; Strains (organisms) ; Synergistic effect ; Urea ; Virulence ; Virulence - drug effects</subject><ispartof>Helicobacter (Cambridge, Mass.), 2024-07, Vol.29 (4), p.e13110-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2430-aa588130e70cf8a2146a32b2ffbcdfef235c52e8bf8001e2b2bec967f02b20c63</cites><orcidid>0000-0003-4930-792X ; 0000-0002-1788-0038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fhel.13110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fhel.13110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39001634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendary, Mahmoud M.</creatorcontrib><creatorcontrib>Elmanakhly, Arwa R.</creatorcontrib><creatorcontrib>Mosallam, Farag M.</creatorcontrib><creatorcontrib>Alblwi, Noaf Abdullah N.</creatorcontrib><creatorcontrib>Mosbah, Rasha A.</creatorcontrib><creatorcontrib>Alshareef, Walaa A.</creatorcontrib><creatorcontrib>Selim, Heba M. R. M.</creatorcontrib><creatorcontrib>Alhomrani, Majid</creatorcontrib><creatorcontrib>Alamri, Abdulhakeem S.</creatorcontrib><creatorcontrib>Safwat, Nesreen A.</creatorcontrib><creatorcontrib>Hamdan, Ahmed M. E.</creatorcontrib><creatorcontrib>Elshimy, Rana</creatorcontrib><title>Boosting the Anti‐Helicobacter Efficacy of Azithromycin through Natural Compounds: Insights From In Vitro, In Vivo, Histopathological, and Molecular Docking Investigations</title><title>Helicobacter (Cambridge, Mass.)</title><addtitle>Helicobacter</addtitle><description>ABSTRACT Background Antimicrobial‐resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin‐resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti‐Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano‐gold emulsion, and curcumin nanoemulsion. Methods The antimicrobial activities of the investigated compounds, both individually and in combination with other anti‐Helicobacter drugs, were evaluated. Their antibiofilm and anti‐virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. Results We observed high anti‐Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values &lt;0.5. The curcumin nanoemulsion was the most active anti‐biofilm and anti‐virulence compound among the examined substances. The biofilm‐correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change &lt;1) post‐treatment with curcumin nanoemulsion. On the protein level, the anti‐virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. Conclusion The anti‐Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub‐MIC levels could enhance the anti‐Helicobacter activity of azithromycin and exhibit anti‐virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>anti‐biofilm</subject><subject>anti‐Helicobacter</subject><subject>anti‐virulence</subject><subject>Azithromycin</subject><subject>Azithromycin - chemistry</subject><subject>Azithromycin - pharmacology</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biological Products - chemistry</subject><subject>Biological Products - pharmacology</subject><subject>Curcumin</subject><subject>Curcumin - chemistry</subject><subject>Curcumin - pharmacology</subject><subject>curcumin nanoemulsion</subject><subject>Drug development</subject><subject>Drug Synergism</subject><subject>Effectiveness</subject><subject>Emulsions</subject><subject>Female</subject><subject>FICI</subject><subject>Formulations</subject><subject>Genes</subject><subject>H. pylori</subject><subject>Helicobacter</subject><subject>Helicobacter Infections - drug therapy</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori - drug effects</subject><subject>Helicobacter pylori - genetics</subject><subject>In vivo methods and tests</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Minimum inhibitory concentration</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Nanoemulsions</subject><subject>Protein folding</subject><subject>Public health</subject><subject>Strains (organisms)</subject><subject>Synergistic effect</subject><subject>Urea</subject><subject>Virulence</subject><subject>Virulence - drug effects</subject><issn>1083-4389</issn><issn>1523-5378</issn><issn>1523-5378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU-O0zAYxS0EYoaBBRdAltiANJmx4_xx2JXSoZUKbIBt5Lh24sGxi-0MKiuOwBG4AXfgKJyEr7SwQMIbP-v76fnpewg9pOSCwrkclL2gjFJyC53SMmdZyWp-GzThLCsYb07QvRivCSElK5q76IQ1hNCKFafo-3PvYzKux2lQeOaS-fnl61JZI30nZFIBL7Q2Usgd9hrPPps0BD_upHF4r6Z-wK9FmoKweO7HrZ_cJj7DKxdNP6SIrwCG149v700K_vwob0AtTUx-K9Lgre_hA3uOhdvgV94qOVkR8AsvP-xzrdyNgoS9SMa7eB_d0cJG9eB4n6F3V4u382W2fvNyNZ-tM5kXjGRClJxTRlRNpOYip0UlWN7lWndyo5XOWSnLXPFOc9iEgkmnZFPVmoAksmJn6MnBdxv8xwkCtKOJUlkrnPJTbBmpG14Rwgigj_9Br_0UHKQDqqmrsq4pB-rpgZLBxxiUbrfBjCLsWkrafYsttNj-bhHYR0fHqRvV5i_5pzYALg_AJ2PV7v9O7XKxPlj-Akgvq5s</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Bendary, Mahmoud M.</creator><creator>Elmanakhly, Arwa R.</creator><creator>Mosallam, Farag M.</creator><creator>Alblwi, Noaf Abdullah N.</creator><creator>Mosbah, Rasha A.</creator><creator>Alshareef, Walaa A.</creator><creator>Selim, Heba M. R. M.</creator><creator>Alhomrani, Majid</creator><creator>Alamri, Abdulhakeem S.</creator><creator>Safwat, Nesreen A.</creator><creator>Hamdan, Ahmed M. E.</creator><creator>Elshimy, Rana</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4930-792X</orcidid><orcidid>https://orcid.org/0000-0002-1788-0038</orcidid></search><sort><creationdate>202407</creationdate><title>Boosting the Anti‐Helicobacter Efficacy of Azithromycin through Natural Compounds: Insights From In Vitro, In Vivo, Histopathological, and Molecular Docking Investigations</title><author>Bendary, Mahmoud M. ; Elmanakhly, Arwa R. ; Mosallam, Farag M. ; Alblwi, Noaf Abdullah N. ; Mosbah, Rasha A. ; Alshareef, Walaa A. ; Selim, Heba M. R. M. ; Alhomrani, Majid ; Alamri, Abdulhakeem S. ; Safwat, Nesreen A. ; Hamdan, Ahmed M. E. ; Elshimy, Rana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2430-aa588130e70cf8a2146a32b2ffbcdfef235c52e8bf8001e2b2bec967f02b20c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>anti‐biofilm</topic><topic>anti‐Helicobacter</topic><topic>anti‐virulence</topic><topic>Azithromycin</topic><topic>Azithromycin - chemistry</topic><topic>Azithromycin - pharmacology</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biological Products - chemistry</topic><topic>Biological Products - pharmacology</topic><topic>Curcumin</topic><topic>Curcumin - chemistry</topic><topic>Curcumin - pharmacology</topic><topic>curcumin nanoemulsion</topic><topic>Drug development</topic><topic>Drug Synergism</topic><topic>Effectiveness</topic><topic>Emulsions</topic><topic>Female</topic><topic>FICI</topic><topic>Formulations</topic><topic>Genes</topic><topic>H. pylori</topic><topic>Helicobacter</topic><topic>Helicobacter Infections - drug therapy</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori - drug effects</topic><topic>Helicobacter pylori - genetics</topic><topic>In vivo methods and tests</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Minimum inhibitory concentration</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Nanoemulsions</topic><topic>Protein folding</topic><topic>Public health</topic><topic>Strains (organisms)</topic><topic>Synergistic effect</topic><topic>Urea</topic><topic>Virulence</topic><topic>Virulence - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendary, Mahmoud M.</creatorcontrib><creatorcontrib>Elmanakhly, Arwa R.</creatorcontrib><creatorcontrib>Mosallam, Farag M.</creatorcontrib><creatorcontrib>Alblwi, Noaf Abdullah N.</creatorcontrib><creatorcontrib>Mosbah, Rasha A.</creatorcontrib><creatorcontrib>Alshareef, Walaa A.</creatorcontrib><creatorcontrib>Selim, Heba M. R. M.</creatorcontrib><creatorcontrib>Alhomrani, Majid</creatorcontrib><creatorcontrib>Alamri, Abdulhakeem S.</creatorcontrib><creatorcontrib>Safwat, Nesreen A.</creatorcontrib><creatorcontrib>Hamdan, Ahmed M. E.</creatorcontrib><creatorcontrib>Elshimy, Rana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Helicobacter (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendary, Mahmoud M.</au><au>Elmanakhly, Arwa R.</au><au>Mosallam, Farag M.</au><au>Alblwi, Noaf Abdullah N.</au><au>Mosbah, Rasha A.</au><au>Alshareef, Walaa A.</au><au>Selim, Heba M. R. M.</au><au>Alhomrani, Majid</au><au>Alamri, Abdulhakeem S.</au><au>Safwat, Nesreen A.</au><au>Hamdan, Ahmed M. E.</au><au>Elshimy, Rana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the Anti‐Helicobacter Efficacy of Azithromycin through Natural Compounds: Insights From In Vitro, In Vivo, Histopathological, and Molecular Docking Investigations</atitle><jtitle>Helicobacter (Cambridge, Mass.)</jtitle><addtitle>Helicobacter</addtitle><date>2024-07</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>e13110</spage><epage>n/a</epage><pages>e13110-n/a</pages><issn>1083-4389</issn><issn>1523-5378</issn><eissn>1523-5378</eissn><abstract>ABSTRACT Background Antimicrobial‐resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin‐resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti‐Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano‐gold emulsion, and curcumin nanoemulsion. Methods The antimicrobial activities of the investigated compounds, both individually and in combination with other anti‐Helicobacter drugs, were evaluated. Their antibiofilm and anti‐virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. Results We observed high anti‐Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values &lt;0.5. The curcumin nanoemulsion was the most active anti‐biofilm and anti‐virulence compound among the examined substances. The biofilm‐correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change &lt;1) post‐treatment with curcumin nanoemulsion. On the protein level, the anti‐virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. Conclusion The anti‐Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub‐MIC levels could enhance the anti‐Helicobacter activity of azithromycin and exhibit anti‐virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39001634</pmid><doi>10.1111/hel.13110</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4930-792X</orcidid><orcidid>https://orcid.org/0000-0002-1788-0038</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4389
ispartof Helicobacter (Cambridge, Mass.), 2024-07, Vol.29 (4), p.e13110-n/a
issn 1083-4389
1523-5378
1523-5378
language eng
recordid cdi_proquest_miscellaneous_3079860030
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibiotics
anti‐biofilm
anti‐Helicobacter
anti‐virulence
Azithromycin
Azithromycin - chemistry
Azithromycin - pharmacology
Biofilms
Biofilms - drug effects
Biological Products - chemistry
Biological Products - pharmacology
Curcumin
Curcumin - chemistry
Curcumin - pharmacology
curcumin nanoemulsion
Drug development
Drug Synergism
Effectiveness
Emulsions
Female
FICI
Formulations
Genes
H. pylori
Helicobacter
Helicobacter Infections - drug therapy
Helicobacter Infections - microbiology
Helicobacter pylori - drug effects
Helicobacter pylori - genetics
In vivo methods and tests
Mice
Microbial Sensitivity Tests
Minimum inhibitory concentration
Molecular docking
Molecular Docking Simulation
Nanoemulsions
Protein folding
Public health
Strains (organisms)
Synergistic effect
Urea
Virulence
Virulence - drug effects
title Boosting the Anti‐Helicobacter Efficacy of Azithromycin through Natural Compounds: Insights From In Vitro, In Vivo, Histopathological, and Molecular Docking Investigations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20Anti%E2%80%90Helicobacter%20Efficacy%20of%20Azithromycin%20through%20Natural%20Compounds:%20Insights%20From%20In%C2%A0Vitro,%20In%C2%A0Vivo,%20Histopathological,%20and%20Molecular%20Docking%20Investigations&rft.jtitle=Helicobacter%20(Cambridge,%20Mass.)&rft.au=Bendary,%20Mahmoud%C2%A0M.&rft.date=2024-07&rft.volume=29&rft.issue=4&rft.spage=e13110&rft.epage=n/a&rft.pages=e13110-n/a&rft.issn=1083-4389&rft.eissn=1523-5378&rft_id=info:doi/10.1111/hel.13110&rft_dat=%3Cproquest_cross%3E3079860030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097657718&rft_id=info:pmid/39001634&rfr_iscdi=true