Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics
Cephalometric analysis (CA) is an indispensable diagnostic tool in orthodontics for treatment planning and outcome assessment. Manual CA is time-consuming and prone to variability. This study aims to compare the accuracy and repeatability of CA results among three commercial AI-driven programs: Ceph...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2024-06, Vol.13 (13), p.3733 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 3733 |
container_title | Journal of clinical medicine |
container_volume | 13 |
creator | Kazimierczak, Wojciech Gawin, Grzegorz Janiszewska-Olszowska, Joanna Dyszkiewicz-Konwińska, Marta Nowicki, Paweł Kazimierczak, Natalia Serafin, Zbigniew Orhan, Kaan |
description | Cephalometric analysis (CA) is an indispensable diagnostic tool in orthodontics for treatment planning and outcome assessment. Manual CA is time-consuming and prone to variability.
This study aims to compare the accuracy and repeatability of CA results among three commercial AI-driven programs: CephX, WebCeph, and AudaxCeph. This study involved a retrospective analysis of lateral cephalograms from a single orthodontic center. Automated CA was performed using the AI programs, focusing on common parameters defined by Downs, Ricketts, and Steiner. Repeatability was tested through 50 randomly reanalyzed cases by each software. Statistical analyses included intraclass correlation coefficients (ICC3) for agreement and the Friedman test for concordance.
One hundred twenty-four cephalograms were analyzed. High agreement between the AI systems was noted for most parameters (ICC3 > 0.9). Notable differences were found in the measurements of angle convexity and the occlusal plane, where discrepancies suggested different methodologies among the programs. Some analyses presented high variability in the results, indicating errors. Repeatability analysis revealed perfect agreement within each program.
AI-driven cephalometric analysis tools demonstrate a high potential for reliable and efficient orthodontic assessments, with substantial agreement in repeated analyses. Despite this, the observed discrepancies and high variability in part of analyses underscore the need for standardization across AI platforms and the critical evaluation of automated results by clinicians, particularly in parameters with significant treatment implications. |
doi_str_mv | 10.3390/jcm13133733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079859094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079859094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-4020204ed8e4150ed3d22be2cc750e682424edb593f232d6f8cf1e6c89ba83803</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWrQn7xLwIuhqktl2k-NSvwqCl3pestlZmpLd1GQr9N8baZXizGG-Hl6Yl5BLzu4BFHtYmY4DBygAjshIsKLIGEg4PujPyDjGFUshZS54cUrOQCqlhFIjUs98t9bBRt9T39LFMiDStOswGKud29LyS1una4d3tJxnj8F-YU9nuF5q5zscgjW07LXbRhvpwnsXqe3pexiWvvH9YE28ICetdhHH-3pOPp6fFrPX7O39ZT4r3zIjcjFkORMpc2wk5nzCsIFGiBqFMUWapjJB6VhPFLQCRDNtpWk5To1UtZYgGZyTm53uOvjPDcah6mw06Jzu0W9iBaxQcqKYyhN6_Q9d-U1IX-wonk8nkifqdkeZ4GMM2FbrYDsdthVn1Y_71YH7ib7aa27qDps_9tdr-AY0H366</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079146581</pqid></control><display><type>article</type><title>Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kazimierczak, Wojciech ; Gawin, Grzegorz ; Janiszewska-Olszowska, Joanna ; Dyszkiewicz-Konwińska, Marta ; Nowicki, Paweł ; Kazimierczak, Natalia ; Serafin, Zbigniew ; Orhan, Kaan</creator><creatorcontrib>Kazimierczak, Wojciech ; Gawin, Grzegorz ; Janiszewska-Olszowska, Joanna ; Dyszkiewicz-Konwińska, Marta ; Nowicki, Paweł ; Kazimierczak, Natalia ; Serafin, Zbigniew ; Orhan, Kaan</creatorcontrib><description>Cephalometric analysis (CA) is an indispensable diagnostic tool in orthodontics for treatment planning and outcome assessment. Manual CA is time-consuming and prone to variability.
This study aims to compare the accuracy and repeatability of CA results among three commercial AI-driven programs: CephX, WebCeph, and AudaxCeph. This study involved a retrospective analysis of lateral cephalograms from a single orthodontic center. Automated CA was performed using the AI programs, focusing on common parameters defined by Downs, Ricketts, and Steiner. Repeatability was tested through 50 randomly reanalyzed cases by each software. Statistical analyses included intraclass correlation coefficients (ICC3) for agreement and the Friedman test for concordance.
One hundred twenty-four cephalograms were analyzed. High agreement between the AI systems was noted for most parameters (ICC3 > 0.9). Notable differences were found in the measurements of angle convexity and the occlusal plane, where discrepancies suggested different methodologies among the programs. Some analyses presented high variability in the results, indicating errors. Repeatability analysis revealed perfect agreement within each program.
AI-driven cephalometric analysis tools demonstrate a high potential for reliable and efficient orthodontic assessments, with substantial agreement in repeated analyses. Despite this, the observed discrepancies and high variability in part of analyses underscore the need for standardization across AI platforms and the critical evaluation of automated results by clinicians, particularly in parameters with significant treatment implications.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm13133733</identifier><identifier>PMID: 38999299</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Clinical medicine ; Orthodontics ; Patients</subject><ispartof>Journal of clinical medicine, 2024-06, Vol.13 (13), p.3733</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-4020204ed8e4150ed3d22be2cc750e682424edb593f232d6f8cf1e6c89ba83803</cites><orcidid>0000-0002-1850-3525 ; 0000-0002-4307-6852 ; 0000-0001-6768-0176 ; 0000-0002-8069-9004 ; 0000-0002-8372-0550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38999299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazimierczak, Wojciech</creatorcontrib><creatorcontrib>Gawin, Grzegorz</creatorcontrib><creatorcontrib>Janiszewska-Olszowska, Joanna</creatorcontrib><creatorcontrib>Dyszkiewicz-Konwińska, Marta</creatorcontrib><creatorcontrib>Nowicki, Paweł</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Serafin, Zbigniew</creatorcontrib><creatorcontrib>Orhan, Kaan</creatorcontrib><title>Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Cephalometric analysis (CA) is an indispensable diagnostic tool in orthodontics for treatment planning and outcome assessment. Manual CA is time-consuming and prone to variability.
This study aims to compare the accuracy and repeatability of CA results among three commercial AI-driven programs: CephX, WebCeph, and AudaxCeph. This study involved a retrospective analysis of lateral cephalograms from a single orthodontic center. Automated CA was performed using the AI programs, focusing on common parameters defined by Downs, Ricketts, and Steiner. Repeatability was tested through 50 randomly reanalyzed cases by each software. Statistical analyses included intraclass correlation coefficients (ICC3) for agreement and the Friedman test for concordance.
One hundred twenty-four cephalograms were analyzed. High agreement between the AI systems was noted for most parameters (ICC3 > 0.9). Notable differences were found in the measurements of angle convexity and the occlusal plane, where discrepancies suggested different methodologies among the programs. Some analyses presented high variability in the results, indicating errors. Repeatability analysis revealed perfect agreement within each program.
AI-driven cephalometric analysis tools demonstrate a high potential for reliable and efficient orthodontic assessments, with substantial agreement in repeated analyses. Despite this, the observed discrepancies and high variability in part of analyses underscore the need for standardization across AI platforms and the critical evaluation of automated results by clinicians, particularly in parameters with significant treatment implications.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Clinical medicine</subject><subject>Orthodontics</subject><subject>Patients</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LAzEQhoMoWrQn7xLwIuhqktl2k-NSvwqCl3pestlZmpLd1GQr9N8baZXizGG-Hl6Yl5BLzu4BFHtYmY4DBygAjshIsKLIGEg4PujPyDjGFUshZS54cUrOQCqlhFIjUs98t9bBRt9T39LFMiDStOswGKud29LyS1una4d3tJxnj8F-YU9nuF5q5zscgjW07LXbRhvpwnsXqe3pexiWvvH9YE28ICetdhHH-3pOPp6fFrPX7O39ZT4r3zIjcjFkORMpc2wk5nzCsIFGiBqFMUWapjJB6VhPFLQCRDNtpWk5To1UtZYgGZyTm53uOvjPDcah6mw06Jzu0W9iBaxQcqKYyhN6_Q9d-U1IX-wonk8nkifqdkeZ4GMM2FbrYDsdthVn1Y_71YH7ib7aa27qDps_9tdr-AY0H366</recordid><startdate>20240626</startdate><enddate>20240626</enddate><creator>Kazimierczak, Wojciech</creator><creator>Gawin, Grzegorz</creator><creator>Janiszewska-Olszowska, Joanna</creator><creator>Dyszkiewicz-Konwińska, Marta</creator><creator>Nowicki, Paweł</creator><creator>Kazimierczak, Natalia</creator><creator>Serafin, Zbigniew</creator><creator>Orhan, Kaan</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1850-3525</orcidid><orcidid>https://orcid.org/0000-0002-4307-6852</orcidid><orcidid>https://orcid.org/0000-0001-6768-0176</orcidid><orcidid>https://orcid.org/0000-0002-8069-9004</orcidid><orcidid>https://orcid.org/0000-0002-8372-0550</orcidid></search><sort><creationdate>20240626</creationdate><title>Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics</title><author>Kazimierczak, Wojciech ; Gawin, Grzegorz ; Janiszewska-Olszowska, Joanna ; Dyszkiewicz-Konwińska, Marta ; Nowicki, Paweł ; Kazimierczak, Natalia ; Serafin, Zbigniew ; Orhan, Kaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-4020204ed8e4150ed3d22be2cc750e682424edb593f232d6f8cf1e6c89ba83803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Clinical medicine</topic><topic>Orthodontics</topic><topic>Patients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazimierczak, Wojciech</creatorcontrib><creatorcontrib>Gawin, Grzegorz</creatorcontrib><creatorcontrib>Janiszewska-Olszowska, Joanna</creatorcontrib><creatorcontrib>Dyszkiewicz-Konwińska, Marta</creatorcontrib><creatorcontrib>Nowicki, Paweł</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Serafin, Zbigniew</creatorcontrib><creatorcontrib>Orhan, Kaan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazimierczak, Wojciech</au><au>Gawin, Grzegorz</au><au>Janiszewska-Olszowska, Joanna</au><au>Dyszkiewicz-Konwińska, Marta</au><au>Nowicki, Paweł</au><au>Kazimierczak, Natalia</au><au>Serafin, Zbigniew</au><au>Orhan, Kaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2024-06-26</date><risdate>2024</risdate><volume>13</volume><issue>13</issue><spage>3733</spage><pages>3733-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Cephalometric analysis (CA) is an indispensable diagnostic tool in orthodontics for treatment planning and outcome assessment. Manual CA is time-consuming and prone to variability.
This study aims to compare the accuracy and repeatability of CA results among three commercial AI-driven programs: CephX, WebCeph, and AudaxCeph. This study involved a retrospective analysis of lateral cephalograms from a single orthodontic center. Automated CA was performed using the AI programs, focusing on common parameters defined by Downs, Ricketts, and Steiner. Repeatability was tested through 50 randomly reanalyzed cases by each software. Statistical analyses included intraclass correlation coefficients (ICC3) for agreement and the Friedman test for concordance.
One hundred twenty-four cephalograms were analyzed. High agreement between the AI systems was noted for most parameters (ICC3 > 0.9). Notable differences were found in the measurements of angle convexity and the occlusal plane, where discrepancies suggested different methodologies among the programs. Some analyses presented high variability in the results, indicating errors. Repeatability analysis revealed perfect agreement within each program.
AI-driven cephalometric analysis tools demonstrate a high potential for reliable and efficient orthodontic assessments, with substantial agreement in repeated analyses. Despite this, the observed discrepancies and high variability in part of analyses underscore the need for standardization across AI platforms and the critical evaluation of automated results by clinicians, particularly in parameters with significant treatment implications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38999299</pmid><doi>10.3390/jcm13133733</doi><orcidid>https://orcid.org/0000-0002-1850-3525</orcidid><orcidid>https://orcid.org/0000-0002-4307-6852</orcidid><orcidid>https://orcid.org/0000-0001-6768-0176</orcidid><orcidid>https://orcid.org/0000-0002-8069-9004</orcidid><orcidid>https://orcid.org/0000-0002-8372-0550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2024-06, Vol.13 (13), p.3733 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_proquest_miscellaneous_3079859094 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Artificial intelligence Automation Clinical medicine Orthodontics Patients |
title | Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Three%20Commercially%20Available,%20AI-Driven%20Cephalometric%20Analysis%20Tools%20in%20Orthodontics&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Kazimierczak,%20Wojciech&rft.date=2024-06-26&rft.volume=13&rft.issue=13&rft.spage=3733&rft.pages=3733-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm13133733&rft_dat=%3Cproquest_cross%3E3079859094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079146581&rft_id=info:pmid/38999299&rfr_iscdi=true |