A triple growth factor strategy for optimizing bone augmentation in mice

With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein‐2 (BMP‐2), insulin‐like growth factor 1 (IGF‐1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-07, Vol.112 (7), p.e35447-n/a
Hauptverfasser: Tenkumo, Taichi, Koide, Rie, Ogawa, Toru, Yamaguchi, Hirofumi, Suzuki, Shigeki, Miyashita, Makiko, Nakamura, Keisuke, Wang, Han, Yoda, Nobuhiro, Sasaki, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e35447
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 112
creator Tenkumo, Taichi
Koide, Rie
Ogawa, Toru
Yamaguchi, Hirofumi
Suzuki, Shigeki
Miyashita, Makiko
Nakamura, Keisuke
Wang, Han
Yoda, Nobuhiro
Sasaki, Keiichi
description With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein‐2 (BMP‐2), insulin‐like growth factor 1 (IGF‐1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP‐2, IGF‐1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP‐2 alone (BMP‐2); BMP‐2 and IGF‐1 (BI); BMP‐2, IGF‐1, and VEGF (BIV); and BMP‐2 and IGF‐1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP‐2 and IGF‐1 induced a greater volume of hard tissue augmentation compared with that of BMP‐2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP‐2, IGF‐1, and VEGF proved to be effective in promoting bone augmentation.
doi_str_mv 10.1002/jbm.b.35447
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079856344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080610943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2857-73827098d34d0a371e47fa6c94305cd06b74531b4f92eb23a0f6ec6fd0b0df6a3</originalsourceid><addsrcrecordid>eNp90MFPwyAUBnBiNG5OT94NiRcTs0kLLeXoFnWaGS96JtDCZGnLBJpl_vWinTt48MQj-eV7Lx8A5wmaJAilNyvZTOQEZ4TQAzBMsiwdE1Ykh_uZ4gE48X4VcY4yfAwGuGCMUsaGYH4LgzPrWsGls5vwDrUog3XQByeCWm6hjh-7DqYxn6ZdQmlbBUW3bFQbRDC2haaFjSnVKTjSovbqbPeOwNv93etsPl68PDzObhfjMi0yOqa4SCliRYVJhQSmiSJUi7xkBKOsrFAuKclwIolmqZIpFkjnqsx1hSSqdC7wCFz1uWtnPzrlA2-ML1Vdi1bZznOMKCuyHBMS6eUfurKda-N1URUoT1DcGtV1r0pnvXdK87UzjXBbniD-XTCPBXPJfwqO-mKX2clGVXv722gEaQ82plbb_7L40_R52qd-AbOUhWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080610943</pqid></control><display><type>article</type><title>A triple growth factor strategy for optimizing bone augmentation in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tenkumo, Taichi ; Koide, Rie ; Ogawa, Toru ; Yamaguchi, Hirofumi ; Suzuki, Shigeki ; Miyashita, Makiko ; Nakamura, Keisuke ; Wang, Han ; Yoda, Nobuhiro ; Sasaki, Keiichi</creator><creatorcontrib>Tenkumo, Taichi ; Koide, Rie ; Ogawa, Toru ; Yamaguchi, Hirofumi ; Suzuki, Shigeki ; Miyashita, Makiko ; Nakamura, Keisuke ; Wang, Han ; Yoda, Nobuhiro ; Sasaki, Keiichi</creatorcontrib><description>With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein‐2 (BMP‐2), insulin‐like growth factor 1 (IGF‐1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP‐2, IGF‐1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP‐2 alone (BMP‐2); BMP‐2 and IGF‐1 (BI); BMP‐2, IGF‐1, and VEGF (BIV); and BMP‐2 and IGF‐1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP‐2 and IGF‐1 induced a greater volume of hard tissue augmentation compared with that of BMP‐2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP‐2, IGF‐1, and VEGF proved to be effective in promoting bone augmentation.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35447</identifier><identifier>PMID: 38997799</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; BMP‐2 ; bone formation ; Bone growth ; Bone Morphogenetic Protein 2 - pharmacology ; Bone morphogenetic proteins ; Dental implants ; Growth factors ; IGF‐1 ; Insulin-Like Growth Factor I - metabolism ; Insulin-Like Growth Factor I - pharmacology ; Insulin-like growth factors ; macrophage M2 ; Macrophages ; Male ; Mice ; Mice, Inbred C57BL ; Scaffolds ; Skull - metabolism ; Tissue Scaffolds - chemistry ; Tissues ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - pharmacology ; VEGF</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-07, Vol.112 (7), p.e35447-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2857-73827098d34d0a371e47fa6c94305cd06b74531b4f92eb23a0f6ec6fd0b0df6a3</cites><orcidid>0000-0003-2237-1040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35447$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35447$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38997799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenkumo, Taichi</creatorcontrib><creatorcontrib>Koide, Rie</creatorcontrib><creatorcontrib>Ogawa, Toru</creatorcontrib><creatorcontrib>Yamaguchi, Hirofumi</creatorcontrib><creatorcontrib>Suzuki, Shigeki</creatorcontrib><creatorcontrib>Miyashita, Makiko</creatorcontrib><creatorcontrib>Nakamura, Keisuke</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Yoda, Nobuhiro</creatorcontrib><creatorcontrib>Sasaki, Keiichi</creatorcontrib><title>A triple growth factor strategy for optimizing bone augmentation in mice</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein‐2 (BMP‐2), insulin‐like growth factor 1 (IGF‐1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP‐2, IGF‐1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP‐2 alone (BMP‐2); BMP‐2 and IGF‐1 (BI); BMP‐2, IGF‐1, and VEGF (BIV); and BMP‐2 and IGF‐1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP‐2 and IGF‐1 induced a greater volume of hard tissue augmentation compared with that of BMP‐2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP‐2, IGF‐1, and VEGF proved to be effective in promoting bone augmentation.</description><subject>Animals</subject><subject>BMP‐2</subject><subject>bone formation</subject><subject>Bone growth</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>Bone morphogenetic proteins</subject><subject>Dental implants</subject><subject>Growth factors</subject><subject>IGF‐1</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-Like Growth Factor I - pharmacology</subject><subject>Insulin-like growth factors</subject><subject>macrophage M2</subject><subject>Macrophages</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Scaffolds</subject><subject>Skull - metabolism</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tissues</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>VEGF</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MFPwyAUBnBiNG5OT94NiRcTs0kLLeXoFnWaGS96JtDCZGnLBJpl_vWinTt48MQj-eV7Lx8A5wmaJAilNyvZTOQEZ4TQAzBMsiwdE1Ykh_uZ4gE48X4VcY4yfAwGuGCMUsaGYH4LgzPrWsGls5vwDrUog3XQByeCWm6hjh-7DqYxn6ZdQmlbBUW3bFQbRDC2haaFjSnVKTjSovbqbPeOwNv93etsPl68PDzObhfjMi0yOqa4SCliRYVJhQSmiSJUi7xkBKOsrFAuKclwIolmqZIpFkjnqsx1hSSqdC7wCFz1uWtnPzrlA2-ML1Vdi1bZznOMKCuyHBMS6eUfurKda-N1URUoT1DcGtV1r0pnvXdK87UzjXBbniD-XTCPBXPJfwqO-mKX2clGVXv722gEaQ82plbb_7L40_R52qd-AbOUhWY</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Tenkumo, Taichi</creator><creator>Koide, Rie</creator><creator>Ogawa, Toru</creator><creator>Yamaguchi, Hirofumi</creator><creator>Suzuki, Shigeki</creator><creator>Miyashita, Makiko</creator><creator>Nakamura, Keisuke</creator><creator>Wang, Han</creator><creator>Yoda, Nobuhiro</creator><creator>Sasaki, Keiichi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2237-1040</orcidid></search><sort><creationdate>202407</creationdate><title>A triple growth factor strategy for optimizing bone augmentation in mice</title><author>Tenkumo, Taichi ; Koide, Rie ; Ogawa, Toru ; Yamaguchi, Hirofumi ; Suzuki, Shigeki ; Miyashita, Makiko ; Nakamura, Keisuke ; Wang, Han ; Yoda, Nobuhiro ; Sasaki, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2857-73827098d34d0a371e47fa6c94305cd06b74531b4f92eb23a0f6ec6fd0b0df6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>BMP‐2</topic><topic>bone formation</topic><topic>Bone growth</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>Bone morphogenetic proteins</topic><topic>Dental implants</topic><topic>Growth factors</topic><topic>IGF‐1</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-Like Growth Factor I - pharmacology</topic><topic>Insulin-like growth factors</topic><topic>macrophage M2</topic><topic>Macrophages</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Scaffolds</topic><topic>Skull - metabolism</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tissues</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenkumo, Taichi</creatorcontrib><creatorcontrib>Koide, Rie</creatorcontrib><creatorcontrib>Ogawa, Toru</creatorcontrib><creatorcontrib>Yamaguchi, Hirofumi</creatorcontrib><creatorcontrib>Suzuki, Shigeki</creatorcontrib><creatorcontrib>Miyashita, Makiko</creatorcontrib><creatorcontrib>Nakamura, Keisuke</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Yoda, Nobuhiro</creatorcontrib><creatorcontrib>Sasaki, Keiichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenkumo, Taichi</au><au>Koide, Rie</au><au>Ogawa, Toru</au><au>Yamaguchi, Hirofumi</au><au>Suzuki, Shigeki</au><au>Miyashita, Makiko</au><au>Nakamura, Keisuke</au><au>Wang, Han</au><au>Yoda, Nobuhiro</au><au>Sasaki, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A triple growth factor strategy for optimizing bone augmentation in mice</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-07</date><risdate>2024</risdate><volume>112</volume><issue>7</issue><spage>e35447</spage><epage>n/a</epage><pages>e35447-n/a</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein‐2 (BMP‐2), insulin‐like growth factor 1 (IGF‐1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP‐2, IGF‐1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP‐2 alone (BMP‐2); BMP‐2 and IGF‐1 (BI); BMP‐2, IGF‐1, and VEGF (BIV); and BMP‐2 and IGF‐1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP‐2 and IGF‐1 induced a greater volume of hard tissue augmentation compared with that of BMP‐2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP‐2, IGF‐1, and VEGF proved to be effective in promoting bone augmentation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38997799</pmid><doi>10.1002/jbm.b.35447</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2237-1040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2024-07, Vol.112 (7), p.e35447-n/a
issn 1552-4973
1552-4981
1552-4981
language eng
recordid cdi_proquest_miscellaneous_3079856344
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
BMP‐2
bone formation
Bone growth
Bone Morphogenetic Protein 2 - pharmacology
Bone morphogenetic proteins
Dental implants
Growth factors
IGF‐1
Insulin-Like Growth Factor I - metabolism
Insulin-Like Growth Factor I - pharmacology
Insulin-like growth factors
macrophage M2
Macrophages
Male
Mice
Mice, Inbred C57BL
Scaffolds
Skull - metabolism
Tissue Scaffolds - chemistry
Tissues
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor A - pharmacology
VEGF
title A triple growth factor strategy for optimizing bone augmentation in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20triple%20growth%20factor%20strategy%20for%20optimizing%20bone%20augmentation%20in%20mice&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Tenkumo,%20Taichi&rft.date=2024-07&rft.volume=112&rft.issue=7&rft.spage=e35447&rft.epage=n/a&rft.pages=e35447-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35447&rft_dat=%3Cproquest_cross%3E3080610943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080610943&rft_id=info:pmid/38997799&rfr_iscdi=true