The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation

Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepanci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2024-09, Vol.258, p.112967, Article 112967
Hauptverfasser: Yang, Ruili, Xu, Yi, Xu, Jinchun, Li, Yali, Wan, Xiaoxiao, Kong, Rui, Ding, Chao, Tao, Han, Wang, Hui-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112967
container_title Journal of photochemistry and photobiology. B, Biology
container_volume 258
creator Yang, Ruili
Xu, Yi
Xu, Jinchun
Li, Yali
Wan, Xiaoxiao
Kong, Rui
Ding, Chao
Tao, Han
Wang, Hui-Li
description Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepancies in triggering the death of staphylococcal cells are not yet understood. Here, we describe the use of a 460-nm-LED to curb the viability of S. aureus. According to the results, the bacterial survival was sharply decreased when blue light was applied, reaching a maximum of 4.11 ± 0.04 log10 units. Moreover, the membrane integrity was damaged by aBL, causing the leakage of intracellular DNA. Transcriptomic analysis indicates the divergent gene expression upon either aBL or aPDI, with pathways such as transport, DNA repair, expression regulation and porphyrin massively affected by aBL. Among the commonly regulated genes, LrgA was underpinned on account of its involvement with biofilm formation and protein transport. By comparing the wildtype with the LrgA-overexpressing (LrgA+) strain, the survival rate, membrane penetration, surface structure and biofilm formation were, to a varying degree, improved for LrgA+, which may suggest that LrgA plays essential roles in modulating the responsiveness of S. aureus. Besides, LrgA may function through regulating the expression of autolysis-related systems. Finally, LrgA overexpression did not attenuate but aggravate the impairment induced by aPDI, showcasing a distinct responsive strategy from aBL. Taken together, this study unveils a unique molecular alteration for the aBL-mediated inactivation, providing the basis of utilizing blue light to reduce the harm brought by S. aureus. •LrgA discriminates aBL from aPDI in responsiveness of S. aureus•The 460-nm light can effectively decrease the survival of S. aureus by 1–4 logs•aBL exerts inhibitory effect through regulating the expression of LrgA•LrgA-AtlA plays key roles in modulating the aBL-mediated effect on biofilm
doi_str_mv 10.1016/j.jphotobiol.2024.112967
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079855556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1011134424001271</els_id><sourcerecordid>3079855556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ade6dc840fb9ef98f2aa5981b07e60723c0c1dc566b8a322f8e699b6cce5363d3</originalsourceid><addsrcrecordid>eNqFUcuO1DAQjBCIXRZ-AfnIJYMfiWMflxULSCNxYDlbjt2ZeJTYwXYGzZfwuzg7CxzpS1vtqmqXq6oQwTuCCX9_3B2XMeTQuzDtKKbNjhAqefesuiaiYzXlgj4vZ0xITVjTXFWvUjriUi3vXlZXTMiC7th19ethBJSj9slEt2QXvJ6QGbU_QEJhQPt4uEXWbbez8zqXaS6MCGkJPrkTeEiPwG9ZL-N5CiYYsyak1wil5fBTR5tQP62AJncYMxpimIuGzhvr0YU9ez07g4q-ye6kt1e8rl4Mekrw5qnfVN_vPz7cfa73Xz99ubvd14Y2MtfaArdGNHjoJQxSDFTrVgrS4w447igz2BBrWs57oRmlgwAuZc-NgZZxZtlN9e6iu8TwY4WU1VzMwjRpD2FNiuFOirYUL1BxgZoYUoowqKV8io5nRbDaYlFH9S8WtcWiLrEU6tunLWs_g_1L_JNDAXy4AKB4PTmIKhkH3oB1EUxWNrj_b_kN9oapLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079855556</pqid></control><display><type>article</type><title>The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Ruili ; Xu, Yi ; Xu, Jinchun ; Li, Yali ; Wan, Xiaoxiao ; Kong, Rui ; Ding, Chao ; Tao, Han ; Wang, Hui-Li</creator><creatorcontrib>Yang, Ruili ; Xu, Yi ; Xu, Jinchun ; Li, Yali ; Wan, Xiaoxiao ; Kong, Rui ; Ding, Chao ; Tao, Han ; Wang, Hui-Li</creatorcontrib><description>Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepancies in triggering the death of staphylococcal cells are not yet understood. Here, we describe the use of a 460-nm-LED to curb the viability of S. aureus. According to the results, the bacterial survival was sharply decreased when blue light was applied, reaching a maximum of 4.11 ± 0.04 log10 units. Moreover, the membrane integrity was damaged by aBL, causing the leakage of intracellular DNA. Transcriptomic analysis indicates the divergent gene expression upon either aBL or aPDI, with pathways such as transport, DNA repair, expression regulation and porphyrin massively affected by aBL. Among the commonly regulated genes, LrgA was underpinned on account of its involvement with biofilm formation and protein transport. By comparing the wildtype with the LrgA-overexpressing (LrgA+) strain, the survival rate, membrane penetration, surface structure and biofilm formation were, to a varying degree, improved for LrgA+, which may suggest that LrgA plays essential roles in modulating the responsiveness of S. aureus. Besides, LrgA may function through regulating the expression of autolysis-related systems. Finally, LrgA overexpression did not attenuate but aggravate the impairment induced by aPDI, showcasing a distinct responsive strategy from aBL. Taken together, this study unveils a unique molecular alteration for the aBL-mediated inactivation, providing the basis of utilizing blue light to reduce the harm brought by S. aureus. •LrgA discriminates aBL from aPDI in responsiveness of S. aureus•The 460-nm light can effectively decrease the survival of S. aureus by 1–4 logs•aBL exerts inhibitory effect through regulating the expression of LrgA•LrgA-AtlA plays key roles in modulating the aBL-mediated effect on biofilm</description><identifier>ISSN: 1011-1344</identifier><identifier>ISSN: 1873-2682</identifier><identifier>EISSN: 1873-2682</identifier><identifier>DOI: 10.1016/j.jphotobiol.2024.112967</identifier><identifier>PMID: 38996773</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Antimicrobial blue light ; Antimicrobial photodynamic inactivation ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biofilm ; Biofilms - drug effects ; Biofilms - radiation effects ; Blue Light ; Gene Expression Regulation, Bacterial - drug effects ; Gene Expression Regulation, Bacterial - radiation effects ; LrgA ; Microbial Viability - drug effects ; Microbial Viability - radiation effects ; Porphyrins - chemistry ; Porphyrins - pharmacology ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - genetics ; Staphylococcus aureus - physiology ; Staphylococcus aureus - radiation effects ; Transcription, Genetic - drug effects ; Transcription, Genetic - radiation effects</subject><ispartof>Journal of photochemistry and photobiology. B, Biology, 2024-09, Vol.258, p.112967, Article 112967</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-ade6dc840fb9ef98f2aa5981b07e60723c0c1dc566b8a322f8e699b6cce5363d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jphotobiol.2024.112967$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38996773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ruili</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Xu, Jinchun</creatorcontrib><creatorcontrib>Li, Yali</creatorcontrib><creatorcontrib>Wan, Xiaoxiao</creatorcontrib><creatorcontrib>Kong, Rui</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><creatorcontrib>Tao, Han</creatorcontrib><creatorcontrib>Wang, Hui-Li</creatorcontrib><title>The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation</title><title>Journal of photochemistry and photobiology. B, Biology</title><addtitle>J Photochem Photobiol B</addtitle><description>Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepancies in triggering the death of staphylococcal cells are not yet understood. Here, we describe the use of a 460-nm-LED to curb the viability of S. aureus. According to the results, the bacterial survival was sharply decreased when blue light was applied, reaching a maximum of 4.11 ± 0.04 log10 units. Moreover, the membrane integrity was damaged by aBL, causing the leakage of intracellular DNA. Transcriptomic analysis indicates the divergent gene expression upon either aBL or aPDI, with pathways such as transport, DNA repair, expression regulation and porphyrin massively affected by aBL. Among the commonly regulated genes, LrgA was underpinned on account of its involvement with biofilm formation and protein transport. By comparing the wildtype with the LrgA-overexpressing (LrgA+) strain, the survival rate, membrane penetration, surface structure and biofilm formation were, to a varying degree, improved for LrgA+, which may suggest that LrgA plays essential roles in modulating the responsiveness of S. aureus. Besides, LrgA may function through regulating the expression of autolysis-related systems. Finally, LrgA overexpression did not attenuate but aggravate the impairment induced by aPDI, showcasing a distinct responsive strategy from aBL. Taken together, this study unveils a unique molecular alteration for the aBL-mediated inactivation, providing the basis of utilizing blue light to reduce the harm brought by S. aureus. •LrgA discriminates aBL from aPDI in responsiveness of S. aureus•The 460-nm light can effectively decrease the survival of S. aureus by 1–4 logs•aBL exerts inhibitory effect through regulating the expression of LrgA•LrgA-AtlA plays key roles in modulating the aBL-mediated effect on biofilm</description><subject>Antimicrobial blue light</subject><subject>Antimicrobial photodynamic inactivation</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilm</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - radiation effects</subject><subject>Blue Light</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Expression Regulation, Bacterial - radiation effects</subject><subject>LrgA</subject><subject>Microbial Viability - drug effects</subject><subject>Microbial Viability - radiation effects</subject><subject>Porphyrins - chemistry</subject><subject>Porphyrins - pharmacology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - physiology</subject><subject>Staphylococcus aureus - radiation effects</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transcription, Genetic - radiation effects</subject><issn>1011-1344</issn><issn>1873-2682</issn><issn>1873-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcuO1DAQjBCIXRZ-AfnIJYMfiWMflxULSCNxYDlbjt2ZeJTYwXYGzZfwuzg7CxzpS1vtqmqXq6oQwTuCCX9_3B2XMeTQuzDtKKbNjhAqefesuiaiYzXlgj4vZ0xITVjTXFWvUjriUi3vXlZXTMiC7th19ethBJSj9slEt2QXvJ6QGbU_QEJhQPt4uEXWbbez8zqXaS6MCGkJPrkTeEiPwG9ZL-N5CiYYsyak1wil5fBTR5tQP62AJncYMxpimIuGzhvr0YU9ez07g4q-ye6kt1e8rl4Mekrw5qnfVN_vPz7cfa73Xz99ubvd14Y2MtfaArdGNHjoJQxSDFTrVgrS4w447igz2BBrWs57oRmlgwAuZc-NgZZxZtlN9e6iu8TwY4WU1VzMwjRpD2FNiuFOirYUL1BxgZoYUoowqKV8io5nRbDaYlFH9S8WtcWiLrEU6tunLWs_g_1L_JNDAXy4AKB4PTmIKhkH3oB1EUxWNrj_b_kN9oapLw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Yang, Ruili</creator><creator>Xu, Yi</creator><creator>Xu, Jinchun</creator><creator>Li, Yali</creator><creator>Wan, Xiaoxiao</creator><creator>Kong, Rui</creator><creator>Ding, Chao</creator><creator>Tao, Han</creator><creator>Wang, Hui-Li</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202409</creationdate><title>The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation</title><author>Yang, Ruili ; Xu, Yi ; Xu, Jinchun ; Li, Yali ; Wan, Xiaoxiao ; Kong, Rui ; Ding, Chao ; Tao, Han ; Wang, Hui-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ade6dc840fb9ef98f2aa5981b07e60723c0c1dc566b8a322f8e699b6cce5363d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimicrobial blue light</topic><topic>Antimicrobial photodynamic inactivation</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilm</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - radiation effects</topic><topic>Blue Light</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Expression Regulation, Bacterial - radiation effects</topic><topic>LrgA</topic><topic>Microbial Viability - drug effects</topic><topic>Microbial Viability - radiation effects</topic><topic>Porphyrins - chemistry</topic><topic>Porphyrins - pharmacology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - physiology</topic><topic>Staphylococcus aureus - radiation effects</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transcription, Genetic - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ruili</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Xu, Jinchun</creatorcontrib><creatorcontrib>Li, Yali</creatorcontrib><creatorcontrib>Wan, Xiaoxiao</creatorcontrib><creatorcontrib>Kong, Rui</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><creatorcontrib>Tao, Han</creatorcontrib><creatorcontrib>Wang, Hui-Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ruili</au><au>Xu, Yi</au><au>Xu, Jinchun</au><au>Li, Yali</au><au>Wan, Xiaoxiao</au><au>Kong, Rui</au><au>Ding, Chao</au><au>Tao, Han</au><au>Wang, Hui-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation</atitle><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle><addtitle>J Photochem Photobiol B</addtitle><date>2024-09</date><risdate>2024</risdate><volume>258</volume><spage>112967</spage><pages>112967-</pages><artnum>112967</artnum><issn>1011-1344</issn><issn>1873-2682</issn><eissn>1873-2682</eissn><abstract>Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepancies in triggering the death of staphylococcal cells are not yet understood. Here, we describe the use of a 460-nm-LED to curb the viability of S. aureus. According to the results, the bacterial survival was sharply decreased when blue light was applied, reaching a maximum of 4.11 ± 0.04 log10 units. Moreover, the membrane integrity was damaged by aBL, causing the leakage of intracellular DNA. Transcriptomic analysis indicates the divergent gene expression upon either aBL or aPDI, with pathways such as transport, DNA repair, expression regulation and porphyrin massively affected by aBL. Among the commonly regulated genes, LrgA was underpinned on account of its involvement with biofilm formation and protein transport. By comparing the wildtype with the LrgA-overexpressing (LrgA+) strain, the survival rate, membrane penetration, surface structure and biofilm formation were, to a varying degree, improved for LrgA+, which may suggest that LrgA plays essential roles in modulating the responsiveness of S. aureus. Besides, LrgA may function through regulating the expression of autolysis-related systems. Finally, LrgA overexpression did not attenuate but aggravate the impairment induced by aPDI, showcasing a distinct responsive strategy from aBL. Taken together, this study unveils a unique molecular alteration for the aBL-mediated inactivation, providing the basis of utilizing blue light to reduce the harm brought by S. aureus. •LrgA discriminates aBL from aPDI in responsiveness of S. aureus•The 460-nm light can effectively decrease the survival of S. aureus by 1–4 logs•aBL exerts inhibitory effect through regulating the expression of LrgA•LrgA-AtlA plays key roles in modulating the aBL-mediated effect on biofilm</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>38996773</pmid><doi>10.1016/j.jphotobiol.2024.112967</doi></addata></record>
fulltext fulltext
identifier ISSN: 1011-1344
ispartof Journal of photochemistry and photobiology. B, Biology, 2024-09, Vol.258, p.112967, Article 112967
issn 1011-1344
1873-2682
1873-2682
language eng
recordid cdi_proquest_miscellaneous_3079855556
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Antimicrobial blue light
Antimicrobial photodynamic inactivation
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biofilm
Biofilms - drug effects
Biofilms - radiation effects
Blue Light
Gene Expression Regulation, Bacterial - drug effects
Gene Expression Regulation, Bacterial - radiation effects
LrgA
Microbial Viability - drug effects
Microbial Viability - radiation effects
Porphyrins - chemistry
Porphyrins - pharmacology
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - genetics
Staphylococcus aureus - physiology
Staphylococcus aureus - radiation effects
Transcription, Genetic - drug effects
Transcription, Genetic - radiation effects
title The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transcriptional%20changes%20of%20LrgA%20discriminates%20the%20responsiveness%20of%20Staphylococcus%20aureus%20towards%20blue%20light%20from%20that%20of%20photodynamic%20inactivation&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20B,%20Biology&rft.au=Yang,%20Ruili&rft.date=2024-09&rft.volume=258&rft.spage=112967&rft.pages=112967-&rft.artnum=112967&rft.issn=1011-1344&rft.eissn=1873-2682&rft_id=info:doi/10.1016/j.jphotobiol.2024.112967&rft_dat=%3Cproquest_cross%3E3079855556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079855556&rft_id=info:pmid/38996773&rft_els_id=S1011134424001271&rfr_iscdi=true