Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction

Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper‐based catalysts have shown efficient conversion of CO2 into the desired multi‐carbon (C2+) produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (44), p.e2401656-n/a
Hauptverfasser: Crandall, Bradie S., Qi, Zhen, Foucher, Alexandre C., Weitzner, Stephen E., Akhade, Sneha A., Liu, Xin, Kashi, Ajay R., Buckley, Aya K., Ma, Sichao, Stach, Eric A., Varley, Joel B., Jiao, Feng, Biener, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e2401656
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Crandall, Bradie S.
Qi, Zhen
Foucher, Alexandre C.
Weitzner, Stephen E.
Akhade, Sneha A.
Liu, Xin
Kashi, Ajay R.
Buckley, Aya K.
Ma, Sichao
Stach, Eric A.
Varley, Joel B.
Jiao, Feng
Biener, Juergen
description Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper‐based catalysts have shown efficient conversion of CO2 into the desired multi‐carbon (C2+) products. This work explores Cu‐based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100‐cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis. Electrochemical CO2 reduction promises to replace fossil fuel feedstocks in the chemical industry. Cu‐based dilute alloys allow tuning of the energy landscape of CO2 electrolysis toward desired C2+ products. A physical vapor deposition catalyst testing platform enables the decoupling of the effect of alloy composition on the C2+/C1 product branching ratio from effects related to catalyst morphology and catalyst integration.
doi_str_mv 10.1002/smll.202401656
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079174427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079174427</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2506-cfbd1b5b9273d5f275189187d853b37ce986c9bdc6d8ff05b4676043cb1ea353</originalsourceid><addsrcrecordid>eNpdkM1LwzAYxoMoOKdXzwEvgnTmo0ma46zzAyoDN7yGNk23jLTRplX639sx2cHT-zzw4-HlB8A1RjOMELkPtXMzgkiMMGf8BEwwxzTiCZGnx4zRObgIYYcQxSQWE_CR9vAhD6aEj9b1nYFz5_wQYOVbuO4b22xgtzUwJXdwZZzRnf223QB9BRf71nq9NbXVuYPpksB3U_Yj4ptLcFblLpirvzsF66fFOn2JsuXzazrPog1hiEe6KkpcsEISQUtWEcFwInEiyoTRggptZMK1LErNy6SqECtiLjiKqS6wySmjU3B7mP1s_VdvQqdqG7RxLm-M74OiSEgs4nicn4Kbf-jO920zPqdGFUQiRmMyUvJA_VhnBvXZ2jpvB4WR2itWe8XqqFit3rLs2OgvA7dwXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122905342</pqid></control><display><type>article</type><title>Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction</title><source>Wiley-Blackwell Journals</source><creator>Crandall, Bradie S. ; Qi, Zhen ; Foucher, Alexandre C. ; Weitzner, Stephen E. ; Akhade, Sneha A. ; Liu, Xin ; Kashi, Ajay R. ; Buckley, Aya K. ; Ma, Sichao ; Stach, Eric A. ; Varley, Joel B. ; Jiao, Feng ; Biener, Juergen</creator><creatorcontrib>Crandall, Bradie S. ; Qi, Zhen ; Foucher, Alexandre C. ; Weitzner, Stephen E. ; Akhade, Sneha A. ; Liu, Xin ; Kashi, Ajay R. ; Buckley, Aya K. ; Ma, Sichao ; Stach, Eric A. ; Varley, Joel B. ; Jiao, Feng ; Biener, Juergen</creatorcontrib><description>Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper‐based catalysts have shown efficient conversion of CO2 into the desired multi‐carbon (C2+) products. This work explores Cu‐based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100‐cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis. Electrochemical CO2 reduction promises to replace fossil fuel feedstocks in the chemical industry. Cu‐based dilute alloys allow tuning of the energy landscape of CO2 electrolysis toward desired C2+ products. A physical vapor deposition catalyst testing platform enables the decoupling of the effect of alloy composition on the C2+/C1 product branching ratio from effects related to catalyst morphology and catalyst integration.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202401656</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloy ; Alloying effects ; Alloys ; Carbon dioxide ; catalyst morphology ; Catalysts ; Composition effects ; Copper ; copper catalyst ; Copper converters ; Density functional theory ; Dilution ; Dimerization ; electrochemical CO2 reduction ; Electrolysis ; energy efficiency ; Physical vapor deposition ; Reaction intermediates</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (44), p.e2401656-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9278-5073 ; 0000-0002-3722-3924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202401656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202401656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Crandall, Bradie S.</creatorcontrib><creatorcontrib>Qi, Zhen</creatorcontrib><creatorcontrib>Foucher, Alexandre C.</creatorcontrib><creatorcontrib>Weitzner, Stephen E.</creatorcontrib><creatorcontrib>Akhade, Sneha A.</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Kashi, Ajay R.</creatorcontrib><creatorcontrib>Buckley, Aya K.</creatorcontrib><creatorcontrib>Ma, Sichao</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Jiao, Feng</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><title>Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper‐based catalysts have shown efficient conversion of CO2 into the desired multi‐carbon (C2+) products. This work explores Cu‐based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100‐cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis. Electrochemical CO2 reduction promises to replace fossil fuel feedstocks in the chemical industry. Cu‐based dilute alloys allow tuning of the energy landscape of CO2 electrolysis toward desired C2+ products. A physical vapor deposition catalyst testing platform enables the decoupling of the effect of alloy composition on the C2+/C1 product branching ratio from effects related to catalyst morphology and catalyst integration.</description><subject>alloy</subject><subject>Alloying effects</subject><subject>Alloys</subject><subject>Carbon dioxide</subject><subject>catalyst morphology</subject><subject>Catalysts</subject><subject>Composition effects</subject><subject>Copper</subject><subject>copper catalyst</subject><subject>Copper converters</subject><subject>Density functional theory</subject><subject>Dilution</subject><subject>Dimerization</subject><subject>electrochemical CO2 reduction</subject><subject>Electrolysis</subject><subject>energy efficiency</subject><subject>Physical vapor deposition</subject><subject>Reaction intermediates</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYxoMoOKdXzwEvgnTmo0ma46zzAyoDN7yGNk23jLTRplX639sx2cHT-zzw4-HlB8A1RjOMELkPtXMzgkiMMGf8BEwwxzTiCZGnx4zRObgIYYcQxSQWE_CR9vAhD6aEj9b1nYFz5_wQYOVbuO4b22xgtzUwJXdwZZzRnf223QB9BRf71nq9NbXVuYPpksB3U_Yj4ptLcFblLpirvzsF66fFOn2JsuXzazrPog1hiEe6KkpcsEISQUtWEcFwInEiyoTRggptZMK1LErNy6SqECtiLjiKqS6wySmjU3B7mP1s_VdvQqdqG7RxLm-M74OiSEgs4nicn4Kbf-jO920zPqdGFUQiRmMyUvJA_VhnBvXZ2jpvB4WR2itWe8XqqFit3rLs2OgvA7dwXQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Crandall, Bradie S.</creator><creator>Qi, Zhen</creator><creator>Foucher, Alexandre C.</creator><creator>Weitzner, Stephen E.</creator><creator>Akhade, Sneha A.</creator><creator>Liu, Xin</creator><creator>Kashi, Ajay R.</creator><creator>Buckley, Aya K.</creator><creator>Ma, Sichao</creator><creator>Stach, Eric A.</creator><creator>Varley, Joel B.</creator><creator>Jiao, Feng</creator><creator>Biener, Juergen</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9278-5073</orcidid><orcidid>https://orcid.org/0000-0002-3722-3924</orcidid></search><sort><creationdate>20241101</creationdate><title>Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction</title><author>Crandall, Bradie S. ; Qi, Zhen ; Foucher, Alexandre C. ; Weitzner, Stephen E. ; Akhade, Sneha A. ; Liu, Xin ; Kashi, Ajay R. ; Buckley, Aya K. ; Ma, Sichao ; Stach, Eric A. ; Varley, Joel B. ; Jiao, Feng ; Biener, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2506-cfbd1b5b9273d5f275189187d853b37ce986c9bdc6d8ff05b4676043cb1ea353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloy</topic><topic>Alloying effects</topic><topic>Alloys</topic><topic>Carbon dioxide</topic><topic>catalyst morphology</topic><topic>Catalysts</topic><topic>Composition effects</topic><topic>Copper</topic><topic>copper catalyst</topic><topic>Copper converters</topic><topic>Density functional theory</topic><topic>Dilution</topic><topic>Dimerization</topic><topic>electrochemical CO2 reduction</topic><topic>Electrolysis</topic><topic>energy efficiency</topic><topic>Physical vapor deposition</topic><topic>Reaction intermediates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crandall, Bradie S.</creatorcontrib><creatorcontrib>Qi, Zhen</creatorcontrib><creatorcontrib>Foucher, Alexandre C.</creatorcontrib><creatorcontrib>Weitzner, Stephen E.</creatorcontrib><creatorcontrib>Akhade, Sneha A.</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Kashi, Ajay R.</creatorcontrib><creatorcontrib>Buckley, Aya K.</creatorcontrib><creatorcontrib>Ma, Sichao</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Jiao, Feng</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crandall, Bradie S.</au><au>Qi, Zhen</au><au>Foucher, Alexandre C.</au><au>Weitzner, Stephen E.</au><au>Akhade, Sneha A.</au><au>Liu, Xin</au><au>Kashi, Ajay R.</au><au>Buckley, Aya K.</au><au>Ma, Sichao</au><au>Stach, Eric A.</au><au>Varley, Joel B.</au><au>Jiao, Feng</au><au>Biener, Juergen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>44</issue><spage>e2401656</spage><epage>n/a</epage><pages>e2401656-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper‐based catalysts have shown efficient conversion of CO2 into the desired multi‐carbon (C2+) products. This work explores Cu‐based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100‐cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis. Electrochemical CO2 reduction promises to replace fossil fuel feedstocks in the chemical industry. Cu‐based dilute alloys allow tuning of the energy landscape of CO2 electrolysis toward desired C2+ products. A physical vapor deposition catalyst testing platform enables the decoupling of the effect of alloy composition on the C2+/C1 product branching ratio from effects related to catalyst morphology and catalyst integration.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202401656</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9278-5073</orcidid><orcidid>https://orcid.org/0000-0002-3722-3924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (44), p.e2401656-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3079174427
source Wiley-Blackwell Journals
subjects alloy
Alloying effects
Alloys
Carbon dioxide
catalyst morphology
Catalysts
Composition effects
Copper
copper catalyst
Copper converters
Density functional theory
Dilution
Dimerization
electrochemical CO2 reduction
Electrolysis
energy efficiency
Physical vapor deposition
Reaction intermediates
title Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%20Based%20Dilute%20Alloys%20for%20Tuning%20the%20C2+%20Selectivity%20of%20Electrochemical%20CO2%20Reduction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Crandall,%20Bradie%20S.&rft.date=2024-11-01&rft.volume=20&rft.issue=44&rft.spage=e2401656&rft.epage=n/a&rft.pages=e2401656-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202401656&rft_dat=%3Cproquest_wiley%3E3079174427%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122905342&rft_id=info:pmid/&rfr_iscdi=true