Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase‑1 Inhibits Poly(aspartic acid) Hydrolase Activity

Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly­(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly­(carboxylates), like po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2024-08, Vol.63 (15), p.1901-1912
Hauptverfasser: Couch, Joshua, Marsee, Justin D., Callaway, Waylan W., Ho, Thi, Glorioso, Kathryn E., Mercante, Michael, Williams, Britney, Coughran, Connor, Weiland, Mitch H., Miller, Justin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1912
container_issue 15
container_start_page 1901
container_title Biochemistry (Easton)
container_volume 63
creator Couch, Joshua
Marsee, Justin D.
Callaway, Waylan W.
Ho, Thi
Glorioso, Kathryn E.
Mercante, Michael
Williams, Britney
Coughran, Connor
Weiland, Mitch H.
Miller, Justin M.
description Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly­(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly­(carboxylates), like poly­(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1KT‑1 and PahZ2KT‑1 from Sphingomonas sp. KT-1 and PahZ1KP‑2 from Pedobacter sp. KP-2. We previously reported the X-ray crystal structure for PahZ1KT‑1, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from Sphingomonas sp. KT-1 and Pedobacter sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1KT‑1 binds ssDNA and dsDNA with an apparent dissociation constant, K D,app = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1KP‑2. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.
doi_str_mv 10.1021/acs.biochem.4c00127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079174163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079174163</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-da30f1bd280d24c3eea4ad87d38e717eb82fecac6a89fd3c35c43b8f8aece7633</originalsourceid><addsrcrecordid>eNp9kMtOwkAUhidGI4g-gYnpEheFufQyXSKikBB0oevJdOZUhpQWOy2xO1_BV_RJLFBZsjo5yff_J-dD6JbgAcGUDKWyg9jkagnrgacwJjQ8Q13iU-x6UeSfoy7GOHBpFOAOurJ21aweDr1L1GG8ASjjXVQv8i2kzuNi5D6YTJvswxmp0mxNWTuTr6WJTQnaiWvnNU_rvrQbWZRGOVIZfe9Ma13kqbTw-_1DnFm2x-1p9Fh_jS4SmVq4aWcPvT9N3sZTd_7yPBuP5q6k1C9dLRlOSKwpx5p6igFIT2oeasYhJCHEnCagpAokjxLNFPOVx2KecAkKwoCxHuofejdF_lmBLcXaWAVpKjPIKysYDiMSemSPsgOqitzaAhKxKcxaFrUgWOyci8a5aJ2L1nmTumsPVPEa9DHzL7kBhgdgl17lVZE1_56s_AMUOpLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079174163</pqid></control><display><type>article</type><title>Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase‑1 Inhibits Poly(aspartic acid) Hydrolase Activity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Couch, Joshua ; Marsee, Justin D. ; Callaway, Waylan W. ; Ho, Thi ; Glorioso, Kathryn E. ; Mercante, Michael ; Williams, Britney ; Coughran, Connor ; Weiland, Mitch H. ; Miller, Justin M.</creator><creatorcontrib>Couch, Joshua ; Marsee, Justin D. ; Callaway, Waylan W. ; Ho, Thi ; Glorioso, Kathryn E. ; Mercante, Michael ; Williams, Britney ; Coughran, Connor ; Weiland, Mitch H. ; Miller, Justin M.</creatorcontrib><description>Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly­(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly­(carboxylates), like poly­(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1KT‑1 and PahZ2KT‑1 from Sphingomonas sp. KT-1 and PahZ1KP‑2 from Pedobacter sp. KP-2. We previously reported the X-ray crystal structure for PahZ1KT‑1, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from Sphingomonas sp. KT-1 and Pedobacter sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1KT‑1 binds ssDNA and dsDNA with an apparent dissociation constant, K D,app = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1KP‑2. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.4c00127</identifier><identifier>PMID: 38995238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aspartic Acid - chemistry ; Aspartic Acid - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; DNA - metabolism ; DNA, Single-Stranded - metabolism ; Hydrolases - chemistry ; Hydrolases - metabolism ; Models, Molecular ; Pedobacter - enzymology ; Peptides - chemistry ; Peptides - metabolism ; Protein Binding ; Sphingomonas - enzymology</subject><ispartof>Biochemistry (Easton), 2024-08, Vol.63 (15), p.1901-1912</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a225t-da30f1bd280d24c3eea4ad87d38e717eb82fecac6a89fd3c35c43b8f8aece7633</cites><orcidid>0000-0001-9689-2370 ; 0000-0002-4744-5192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.4c00127$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.4c00127$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38995238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Couch, Joshua</creatorcontrib><creatorcontrib>Marsee, Justin D.</creatorcontrib><creatorcontrib>Callaway, Waylan W.</creatorcontrib><creatorcontrib>Ho, Thi</creatorcontrib><creatorcontrib>Glorioso, Kathryn E.</creatorcontrib><creatorcontrib>Mercante, Michael</creatorcontrib><creatorcontrib>Williams, Britney</creatorcontrib><creatorcontrib>Coughran, Connor</creatorcontrib><creatorcontrib>Weiland, Mitch H.</creatorcontrib><creatorcontrib>Miller, Justin M.</creatorcontrib><title>Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase‑1 Inhibits Poly(aspartic acid) Hydrolase Activity</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly­(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly­(carboxylates), like poly­(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1KT‑1 and PahZ2KT‑1 from Sphingomonas sp. KT-1 and PahZ1KP‑2 from Pedobacter sp. KP-2. We previously reported the X-ray crystal structure for PahZ1KT‑1, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from Sphingomonas sp. KT-1 and Pedobacter sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1KT‑1 binds ssDNA and dsDNA with an apparent dissociation constant, K D,app = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1KP‑2. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.</description><subject>Aspartic Acid - chemistry</subject><subject>Aspartic Acid - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>DNA - metabolism</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - metabolism</subject><subject>Models, Molecular</subject><subject>Pedobacter - enzymology</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Sphingomonas - enzymology</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwkAUhidGI4g-gYnpEheFufQyXSKikBB0oevJdOZUhpQWOy2xO1_BV_RJLFBZsjo5yff_J-dD6JbgAcGUDKWyg9jkagnrgacwJjQ8Q13iU-x6UeSfoy7GOHBpFOAOurJ21aweDr1L1GG8ASjjXVQv8i2kzuNi5D6YTJvswxmp0mxNWTuTr6WJTQnaiWvnNU_rvrQbWZRGOVIZfe9Ma13kqbTw-_1DnFm2x-1p9Fh_jS4SmVq4aWcPvT9N3sZTd_7yPBuP5q6k1C9dLRlOSKwpx5p6igFIT2oeasYhJCHEnCagpAokjxLNFPOVx2KecAkKwoCxHuofejdF_lmBLcXaWAVpKjPIKysYDiMSemSPsgOqitzaAhKxKcxaFrUgWOyci8a5aJ2L1nmTumsPVPEa9DHzL7kBhgdgl17lVZE1_56s_AMUOpLg</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Couch, Joshua</creator><creator>Marsee, Justin D.</creator><creator>Callaway, Waylan W.</creator><creator>Ho, Thi</creator><creator>Glorioso, Kathryn E.</creator><creator>Mercante, Michael</creator><creator>Williams, Britney</creator><creator>Coughran, Connor</creator><creator>Weiland, Mitch H.</creator><creator>Miller, Justin M.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9689-2370</orcidid><orcidid>https://orcid.org/0000-0002-4744-5192</orcidid></search><sort><creationdate>20240806</creationdate><title>Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase‑1 Inhibits Poly(aspartic acid) Hydrolase Activity</title><author>Couch, Joshua ; Marsee, Justin D. ; Callaway, Waylan W. ; Ho, Thi ; Glorioso, Kathryn E. ; Mercante, Michael ; Williams, Britney ; Coughran, Connor ; Weiland, Mitch H. ; Miller, Justin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-da30f1bd280d24c3eea4ad87d38e717eb82fecac6a89fd3c35c43b8f8aece7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspartic Acid - chemistry</topic><topic>Aspartic Acid - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>DNA - metabolism</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - metabolism</topic><topic>Models, Molecular</topic><topic>Pedobacter - enzymology</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Sphingomonas - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couch, Joshua</creatorcontrib><creatorcontrib>Marsee, Justin D.</creatorcontrib><creatorcontrib>Callaway, Waylan W.</creatorcontrib><creatorcontrib>Ho, Thi</creatorcontrib><creatorcontrib>Glorioso, Kathryn E.</creatorcontrib><creatorcontrib>Mercante, Michael</creatorcontrib><creatorcontrib>Williams, Britney</creatorcontrib><creatorcontrib>Coughran, Connor</creatorcontrib><creatorcontrib>Weiland, Mitch H.</creatorcontrib><creatorcontrib>Miller, Justin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couch, Joshua</au><au>Marsee, Justin D.</au><au>Callaway, Waylan W.</au><au>Ho, Thi</au><au>Glorioso, Kathryn E.</au><au>Mercante, Michael</au><au>Williams, Britney</au><au>Coughran, Connor</au><au>Weiland, Mitch H.</au><au>Miller, Justin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase‑1 Inhibits Poly(aspartic acid) Hydrolase Activity</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>63</volume><issue>15</issue><spage>1901</spage><epage>1912</epage><pages>1901-1912</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly­(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly­(carboxylates), like poly­(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1KT‑1 and PahZ2KT‑1 from Sphingomonas sp. KT-1 and PahZ1KP‑2 from Pedobacter sp. KP-2. We previously reported the X-ray crystal structure for PahZ1KT‑1, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from Sphingomonas sp. KT-1 and Pedobacter sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1KT‑1 binds ssDNA and dsDNA with an apparent dissociation constant, K D,app = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1KP‑2. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38995238</pmid><doi>10.1021/acs.biochem.4c00127</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9689-2370</orcidid><orcidid>https://orcid.org/0000-0002-4744-5192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2024-08, Vol.63 (15), p.1901-1912
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_proquest_miscellaneous_3079174163
source MEDLINE; American Chemical Society Journals
subjects Aspartic Acid - chemistry
Aspartic Acid - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
DNA - metabolism
DNA, Single-Stranded - metabolism
Hydrolases - chemistry
Hydrolases - metabolism
Models, Molecular
Pedobacter - enzymology
Peptides - chemistry
Peptides - metabolism
Protein Binding
Sphingomonas - enzymology
title Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase‑1 Inhibits Poly(aspartic acid) Hydrolase Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20DNA-Binding%20Activity%20Exhibited%20by%20Poly(aspartic%20acid)%20Hydrolase%E2%80%911%20Inhibits%20Poly(aspartic%20acid)%20Hydrolase%20Activity&rft.jtitle=Biochemistry%20(Easton)&rft.au=Couch,%20Joshua&rft.date=2024-08-06&rft.volume=63&rft.issue=15&rft.spage=1901&rft.epage=1912&rft.pages=1901-1912&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.4c00127&rft_dat=%3Cproquest_cross%3E3079174163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079174163&rft_id=info:pmid/38995238&rfr_iscdi=true