Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting
There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Int...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Hausmann, Jacqueline Salekin, Md Sirajus Zamzmi, Ghada Mouton, Peter R. Prescott, Stephanie Ho, Thao Sun, Yu Goldgof, Dmitry |
description | There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU. We improved accuracy in this complex scene by training a state-of-the-art "You-Only-Look-Once" (YOLO) face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve (AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses. Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical neonates, here we share the weights from training our YOLO model with these facial expression data. These weights can facilitate the further development of accurate strategies for detecting facial expression, which can be used to predict the time to pain onset in combination with other sensory modalities (body movements, crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe pain in this vulnerable patient population. |
doi_str_mv | 10.1109/ACCESS.2024.3383789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079173387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10486909</ieee_id><doaj_id>oai_doaj_org_article_7d7dc1d056e445a6a37dff0c8c7005e1</doaj_id><sourcerecordid>3035278372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-8419d8b6821ae50b07d2496760b8e775e56582b7a3f3a954379ba0c22648b00a3</originalsourceid><addsrcrecordid>eNpdkktrGzEUhYfS0oQ0v6ClDHTTjV09Rq9VMZOkMYS04GYt7mju2DLjkauRA_33lWMnONVG0tF3D5LuKYqPlEwpJebbrK6vF4spI6yacq650uZNcc6oNBMuuHx7sj4rLsdxTfLQWRLqfXHGtTEV4fq8gJlzuwgJy3sMAyToyxtwWF5hQpd8GMouxHK-2cbwiG35C_xQ1j2Mo--8gycgK2mFZb2Cvsdh6YdleT-vH8oFppQ3H4p3HfQjXh7ni-Lh5vp3fTu5-_ljXs_uJq5SNE10RU2rG6kZBRSkIapllZFKkkajUgKFFJo1CnjHwYiKK9MAcYzJSjeEAL8o5gffNsDabqPfQPxrA3j7JIS4tBCTdz1a1arW0ZYIiVUlQAJXbdcRp50iRCDNXt8PXttds8HW4ZAi9K9MX58MfmWX4dFSyriWRGWHr0eHGP7scEx240eHfQ8Dht1oOVGGqty5PfrlP3QddnHIf5UpLpjK3WWZ4gfKxTCOEbuX21Bi95Gwh0jYfSTsMRK56vPpQ15qngOQgU8HwCPiiWWlpSGG_wOIeblt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035278372</pqid></control><display><type>article</type><title>Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hausmann, Jacqueline ; Salekin, Md Sirajus ; Zamzmi, Ghada ; Mouton, Peter R. ; Prescott, Stephanie ; Ho, Thao ; Sun, Yu ; Goldgof, Dmitry</creator><creatorcontrib>Hausmann, Jacqueline ; Salekin, Md Sirajus ; Zamzmi, Ghada ; Mouton, Peter R. ; Prescott, Stephanie ; Ho, Thao ; Sun, Yu ; Goldgof, Dmitry</creatorcontrib><description>There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU. We improved accuracy in this complex scene by training a state-of-the-art "You-Only-Look-Once" (YOLO) face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve (AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses. Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical neonates, here we share the weights from training our YOLO model with these facial expression data. These weights can facilitate the further development of accurate strategies for detecting facial expression, which can be used to predict the time to pain onset in combination with other sensory modalities (body movements, crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe pain in this vulnerable patient population.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3383789</identifier><identifier>PMID: 38994038</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Classification ; Convolutional Neural Network ; Detectors ; Face detection ; Face recognition ; Faces ; Machine learning ; Neonatal Intensive Care Unit ; Neonate ; Nurses ; Object recognition ; Pain ; Pain Classification ; Pediatrics ; Recurrent Neural Network ; Run time (computers) ; YOLO</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c471t-8419d8b6821ae50b07d2496760b8e775e56582b7a3f3a954379ba0c22648b00a3</cites><orcidid>0000-0002-8307-2768 ; 0000-0001-5461-863X ; 0000-0002-1008-4055 ; 0000-0001-7192-4145 ; 0000-0003-4723-5539 ; 0000-0002-4580-9669 ; 0000-0002-0469-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10486909$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2095,27612,27903,27904,54911</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38994038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hausmann, Jacqueline</creatorcontrib><creatorcontrib>Salekin, Md Sirajus</creatorcontrib><creatorcontrib>Zamzmi, Ghada</creatorcontrib><creatorcontrib>Mouton, Peter R.</creatorcontrib><creatorcontrib>Prescott, Stephanie</creatorcontrib><creatorcontrib>Ho, Thao</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Goldgof, Dmitry</creatorcontrib><title>Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE Access</addtitle><description>There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU. We improved accuracy in this complex scene by training a state-of-the-art "You-Only-Look-Once" (YOLO) face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve (AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses. Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical neonates, here we share the weights from training our YOLO model with these facial expression data. These weights can facilitate the further development of accurate strategies for detecting facial expression, which can be used to predict the time to pain onset in combination with other sensory modalities (body movements, crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe pain in this vulnerable patient population.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Convolutional Neural Network</subject><subject>Detectors</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Machine learning</subject><subject>Neonatal Intensive Care Unit</subject><subject>Neonate</subject><subject>Nurses</subject><subject>Object recognition</subject><subject>Pain</subject><subject>Pain Classification</subject><subject>Pediatrics</subject><subject>Recurrent Neural Network</subject><subject>Run time (computers)</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktrGzEUhYfS0oQ0v6ClDHTTjV09Rq9VMZOkMYS04GYt7mju2DLjkauRA_33lWMnONVG0tF3D5LuKYqPlEwpJebbrK6vF4spI6yacq650uZNcc6oNBMuuHx7sj4rLsdxTfLQWRLqfXHGtTEV4fq8gJlzuwgJy3sMAyToyxtwWF5hQpd8GMouxHK-2cbwiG35C_xQ1j2Mo--8gycgK2mFZb2Cvsdh6YdleT-vH8oFppQ3H4p3HfQjXh7ni-Lh5vp3fTu5-_ljXs_uJq5SNE10RU2rG6kZBRSkIapllZFKkkajUgKFFJo1CnjHwYiKK9MAcYzJSjeEAL8o5gffNsDabqPfQPxrA3j7JIS4tBCTdz1a1arW0ZYIiVUlQAJXbdcRp50iRCDNXt8PXttds8HW4ZAi9K9MX58MfmWX4dFSyriWRGWHr0eHGP7scEx240eHfQ8Dht1oOVGGqty5PfrlP3QddnHIf5UpLpjK3WWZ4gfKxTCOEbuX21Bi95Gwh0jYfSTsMRK56vPpQ15qngOQgU8HwCPiiWWlpSGG_wOIeblt</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hausmann, Jacqueline</creator><creator>Salekin, Md Sirajus</creator><creator>Zamzmi, Ghada</creator><creator>Mouton, Peter R.</creator><creator>Prescott, Stephanie</creator><creator>Ho, Thao</creator><creator>Sun, Yu</creator><creator>Goldgof, Dmitry</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8307-2768</orcidid><orcidid>https://orcid.org/0000-0001-5461-863X</orcidid><orcidid>https://orcid.org/0000-0002-1008-4055</orcidid><orcidid>https://orcid.org/0000-0001-7192-4145</orcidid><orcidid>https://orcid.org/0000-0003-4723-5539</orcidid><orcidid>https://orcid.org/0000-0002-4580-9669</orcidid><orcidid>https://orcid.org/0000-0002-0469-5255</orcidid></search><sort><creationdate>20240101</creationdate><title>Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting</title><author>Hausmann, Jacqueline ; Salekin, Md Sirajus ; Zamzmi, Ghada ; Mouton, Peter R. ; Prescott, Stephanie ; Ho, Thao ; Sun, Yu ; Goldgof, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-8419d8b6821ae50b07d2496760b8e775e56582b7a3f3a954379ba0c22648b00a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Convolutional Neural Network</topic><topic>Detectors</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Machine learning</topic><topic>Neonatal Intensive Care Unit</topic><topic>Neonate</topic><topic>Nurses</topic><topic>Object recognition</topic><topic>Pain</topic><topic>Pain Classification</topic><topic>Pediatrics</topic><topic>Recurrent Neural Network</topic><topic>Run time (computers)</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hausmann, Jacqueline</creatorcontrib><creatorcontrib>Salekin, Md Sirajus</creatorcontrib><creatorcontrib>Zamzmi, Ghada</creatorcontrib><creatorcontrib>Mouton, Peter R.</creatorcontrib><creatorcontrib>Prescott, Stephanie</creatorcontrib><creatorcontrib>Ho, Thao</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Goldgof, Dmitry</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hausmann, Jacqueline</au><au>Salekin, Md Sirajus</au><au>Zamzmi, Ghada</au><au>Mouton, Peter R.</au><au>Prescott, Stephanie</au><au>Ho, Thao</au><au>Sun, Yu</au><au>Goldgof, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><addtitle>IEEE Access</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU. We improved accuracy in this complex scene by training a state-of-the-art "You-Only-Look-Once" (YOLO) face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve (AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses. Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical neonates, here we share the weights from training our YOLO model with these facial expression data. These weights can facilitate the further development of accurate strategies for detecting facial expression, which can be used to predict the time to pain onset in combination with other sensory modalities (body movements, crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe pain in this vulnerable patient population.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38994038</pmid><doi>10.1109/ACCESS.2024.3383789</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8307-2768</orcidid><orcidid>https://orcid.org/0000-0001-5461-863X</orcidid><orcidid>https://orcid.org/0000-0002-1008-4055</orcidid><orcidid>https://orcid.org/0000-0001-7192-4145</orcidid><orcidid>https://orcid.org/0000-0003-4723-5539</orcidid><orcidid>https://orcid.org/0000-0002-4580-9669</orcidid><orcidid>https://orcid.org/0000-0002-0469-5255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_miscellaneous_3079173387 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Classification Convolutional Neural Network Detectors Face detection Face recognition Faces Machine learning Neonatal Intensive Care Unit Neonate Nurses Object recognition Pain Pain Classification Pediatrics Recurrent Neural Network Run time (computers) YOLO |
title | Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Neonatal%20Face%20Detection%20for%20Improved%20Pain%20Classification%20in%20the%20Challenging%20NICU%20Setting&rft.jtitle=IEEE%20access&rft.au=Hausmann,%20Jacqueline&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3383789&rft_dat=%3Cproquest_doaj_%3E3035278372%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035278372&rft_id=info:pmid/38994038&rft_ieee_id=10486909&rft_doaj_id=oai_doaj_org_article_7d7dc1d056e445a6a37dff0c8c7005e1&rfr_iscdi=true |