Uncovering STEMI patient phenotypes using unsupervised machine learning
Gespeichert in:
Veröffentlicht in: | International journal of cardiology 2024-10, Vol.413, p.132346, Article 132346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 132346 |
container_title | International journal of cardiology |
container_volume | 413 |
creator | Chunta, Alec Miller, Robert J.H. |
description | |
doi_str_mv | 10.1016/j.ijcard.2024.132346 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079172654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167527324009689</els_id><sourcerecordid>3079172654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-c53d3a54d8a35fe7a15ea244041351bf7be34ea86b03c74f926ea8fe85207fae3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-A5EcvSTuZza5CFJqLVQ82J6XzWZiN6RJ3E0K_fempHr0NAzzvDPMg9A9wRHBJH4qI1sa7fKIYsojwijj8QWakkTykEjBL9F0wGQoqGQTdON9iTHmaZpcowlL0pQmOJmi5bY2zQGcrb-Cz83ifRW0urNQd0G7g7rpji34oPencV_7vgV3sB7yYK_NztYQVKBdPUxv0VWhKw935zpD29fFZv4Wrj-Wq_nLOjSUky40guVMC54nmokCpCYCNOUcc8IEyQqZAeOgkzjDzEhepDQeugISQbEsNLAZehz3tq757sF3am-9garSNTS9VwzLlEgaCz6gfESNa7x3UKjW2b12R0WwOilUpRoVqpNCNSocYg_nC322h_wv9OtsAJ5HAIY_Dxac8mYwZiC3Dkyn8sb-f-EHxA6Ecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079172654</pqid></control><display><type>article</type><title>Uncovering STEMI patient phenotypes using unsupervised machine learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chunta, Alec ; Miller, Robert J.H.</creator><creatorcontrib>Chunta, Alec ; Miller, Robert J.H.</creatorcontrib><identifier>ISSN: 0167-5273</identifier><identifier>ISSN: 1874-1754</identifier><identifier>EISSN: 1874-1754</identifier><identifier>DOI: 10.1016/j.ijcard.2024.132346</identifier><identifier>PMID: 38992808</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aged ; Electrocardiography - methods ; Female ; Humans ; Male ; Middle Aged ; Phenotype ; ST Elevation Myocardial Infarction - diagnosis ; ST Elevation Myocardial Infarction - therapy ; Unsupervised Machine Learning</subject><ispartof>International journal of cardiology, 2024-10, Vol.413, p.132346, Article 132346</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-c53d3a54d8a35fe7a15ea244041351bf7be34ea86b03c74f926ea8fe85207fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167527324009689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38992808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chunta, Alec</creatorcontrib><creatorcontrib>Miller, Robert J.H.</creatorcontrib><title>Uncovering STEMI patient phenotypes using unsupervised machine learning</title><title>International journal of cardiology</title><addtitle>Int J Cardiol</addtitle><subject>Aged</subject><subject>Electrocardiography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Phenotype</subject><subject>ST Elevation Myocardial Infarction - diagnosis</subject><subject>ST Elevation Myocardial Infarction - therapy</subject><subject>Unsupervised Machine Learning</subject><issn>0167-5273</issn><issn>1874-1754</issn><issn>1874-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-A5EcvSTuZza5CFJqLVQ82J6XzWZiN6RJ3E0K_fempHr0NAzzvDPMg9A9wRHBJH4qI1sa7fKIYsojwijj8QWakkTykEjBL9F0wGQoqGQTdON9iTHmaZpcowlL0pQmOJmi5bY2zQGcrb-Cz83ifRW0urNQd0G7g7rpji34oPencV_7vgV3sB7yYK_NztYQVKBdPUxv0VWhKw935zpD29fFZv4Wrj-Wq_nLOjSUky40guVMC54nmokCpCYCNOUcc8IEyQqZAeOgkzjDzEhepDQeugISQbEsNLAZehz3tq757sF3am-9garSNTS9VwzLlEgaCz6gfESNa7x3UKjW2b12R0WwOilUpRoVqpNCNSocYg_nC322h_wv9OtsAJ5HAIY_Dxac8mYwZiC3Dkyn8sb-f-EHxA6Ecg</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chunta, Alec</creator><creator>Miller, Robert J.H.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241015</creationdate><title>Uncovering STEMI patient phenotypes using unsupervised machine learning</title><author>Chunta, Alec ; Miller, Robert J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-c53d3a54d8a35fe7a15ea244041351bf7be34ea86b03c74f926ea8fe85207fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Electrocardiography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Phenotype</topic><topic>ST Elevation Myocardial Infarction - diagnosis</topic><topic>ST Elevation Myocardial Infarction - therapy</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chunta, Alec</creatorcontrib><creatorcontrib>Miller, Robert J.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chunta, Alec</au><au>Miller, Robert J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering STEMI patient phenotypes using unsupervised machine learning</atitle><jtitle>International journal of cardiology</jtitle><addtitle>Int J Cardiol</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>413</volume><spage>132346</spage><pages>132346-</pages><artnum>132346</artnum><issn>0167-5273</issn><issn>1874-1754</issn><eissn>1874-1754</eissn><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38992808</pmid><doi>10.1016/j.ijcard.2024.132346</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-5273 |
ispartof | International journal of cardiology, 2024-10, Vol.413, p.132346, Article 132346 |
issn | 0167-5273 1874-1754 1874-1754 |
language | eng |
recordid | cdi_proquest_miscellaneous_3079172654 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aged Electrocardiography - methods Female Humans Male Middle Aged Phenotype ST Elevation Myocardial Infarction - diagnosis ST Elevation Myocardial Infarction - therapy Unsupervised Machine Learning |
title | Uncovering STEMI patient phenotypes using unsupervised machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20STEMI%20patient%20phenotypes%20using%20unsupervised%20machine%20learning&rft.jtitle=International%20journal%20of%20cardiology&rft.au=Chunta,%20Alec&rft.date=2024-10-15&rft.volume=413&rft.spage=132346&rft.pages=132346-&rft.artnum=132346&rft.issn=0167-5273&rft.eissn=1874-1754&rft_id=info:doi/10.1016/j.ijcard.2024.132346&rft_dat=%3Cproquest_cross%3E3079172654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079172654&rft_id=info:pmid/38992808&rft_els_id=S0167527324009689&rfr_iscdi=true |