Explainable deep learning and biomechanical modeling for TMJ disorder morphological risk factors

Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis, development of targeted prevention, and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analyses of disease data sets but does not provide sufficient context...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JCI insight 2024-07, Vol.9 (16)
Hauptverfasser: Sun, Shuchun, Xu, Pei, Buchweitz, Nathan, Hill, Cherice N, Ahmadi, Farhad, Wilson, Marshall B, Mei, Angela, She, Xin, Sagl, Benedikt, Slate, Elizabeth H, Lee, Janice S, Wu, Yongren, Yao, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title JCI insight
container_volume 9
creator Sun, Shuchun
Xu, Pei
Buchweitz, Nathan
Hill, Cherice N
Ahmadi, Farhad
Wilson, Marshall B
Mei, Angela
She, Xin
Sagl, Benedikt
Slate, Elizabeth H
Lee, Janice S
Wu, Yongren
Yao, Hai
description Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis, development of targeted prevention, and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analyses of disease data sets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through participant-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the "mechanism unknown" limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical data sets by providing the crucial biomechanical context.
doi_str_mv 10.1172/jci.insight.178578
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079170483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079170483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-32bd6ec22976a17fc8eba0912db07247b4d95777bb8e17e4060d2db1313b9e033</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EolXpH2BAGVlS_Eh7nRFV5aUiljIHO75pXZw42KkE_56UFsR0jnQew0fIJaMTxoDfbEs7sU206003YSCnIE_IkAvIUwFUnv7zAzKOcUspZZBxOpXnZCBkntNZBkPytvhsnbKN0g4Tg9gmDlVobLNOVGMSbX2N5UY1tlQuqb1Bt48qH5LV81NibPTBYOiT0G688-ufXrDxPalU2fkQL8hZpVzE8VFH5PVusZo_pMuX-8f57TItOZddKrg2M-x9DjPFoColakVzxo2mwDPQmcmnAKC1RAaY0Rk1fcYEEzpHKsSIXB9-2-A_dhi7oraxROdUg34XC0EhZ0Azua_yQ7UMPsaAVdEGW6vwVTBa7OEWPdziCLc4wO1HV8f_na7R_E1-UYpv9m15KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079170483</pqid></control><display><type>article</type><title>Explainable deep learning and biomechanical modeling for TMJ disorder morphological risk factors</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sun, Shuchun ; Xu, Pei ; Buchweitz, Nathan ; Hill, Cherice N ; Ahmadi, Farhad ; Wilson, Marshall B ; Mei, Angela ; She, Xin ; Sagl, Benedikt ; Slate, Elizabeth H ; Lee, Janice S ; Wu, Yongren ; Yao, Hai</creator><creatorcontrib>Sun, Shuchun ; Xu, Pei ; Buchweitz, Nathan ; Hill, Cherice N ; Ahmadi, Farhad ; Wilson, Marshall B ; Mei, Angela ; She, Xin ; Sagl, Benedikt ; Slate, Elizabeth H ; Lee, Janice S ; Wu, Yongren ; Yao, Hai</creatorcontrib><description>Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis, development of targeted prevention, and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analyses of disease data sets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through participant-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the "mechanism unknown" limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical data sets by providing the crucial biomechanical context.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.178578</identifier><identifier>PMID: 38990647</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Biomechanical Phenomena ; Deep Learning ; Female ; Humans ; Male ; Risk Factors ; Temporomandibular Joint - pathology ; Temporomandibular Joint - physiopathology ; Temporomandibular Joint Disorders - pathology ; Temporomandibular Joint Disorders - physiopathology ; Young Adult</subject><ispartof>JCI insight, 2024-07, Vol.9 (16)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38990647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Shuchun</creatorcontrib><creatorcontrib>Xu, Pei</creatorcontrib><creatorcontrib>Buchweitz, Nathan</creatorcontrib><creatorcontrib>Hill, Cherice N</creatorcontrib><creatorcontrib>Ahmadi, Farhad</creatorcontrib><creatorcontrib>Wilson, Marshall B</creatorcontrib><creatorcontrib>Mei, Angela</creatorcontrib><creatorcontrib>She, Xin</creatorcontrib><creatorcontrib>Sagl, Benedikt</creatorcontrib><creatorcontrib>Slate, Elizabeth H</creatorcontrib><creatorcontrib>Lee, Janice S</creatorcontrib><creatorcontrib>Wu, Yongren</creatorcontrib><creatorcontrib>Yao, Hai</creatorcontrib><title>Explainable deep learning and biomechanical modeling for TMJ disorder morphological risk factors</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis, development of targeted prevention, and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analyses of disease data sets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through participant-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the "mechanism unknown" limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical data sets by providing the crucial biomechanical context.</description><subject>Adult</subject><subject>Biomechanical Phenomena</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Risk Factors</subject><subject>Temporomandibular Joint - pathology</subject><subject>Temporomandibular Joint - physiopathology</subject><subject>Temporomandibular Joint Disorders - pathology</subject><subject>Temporomandibular Joint Disorders - physiopathology</subject><subject>Young Adult</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAUhS0EolXpH2BAGVlS_Eh7nRFV5aUiljIHO75pXZw42KkE_56UFsR0jnQew0fIJaMTxoDfbEs7sU206003YSCnIE_IkAvIUwFUnv7zAzKOcUspZZBxOpXnZCBkntNZBkPytvhsnbKN0g4Tg9gmDlVobLNOVGMSbX2N5UY1tlQuqb1Bt48qH5LV81NibPTBYOiT0G688-ufXrDxPalU2fkQL8hZpVzE8VFH5PVusZo_pMuX-8f57TItOZddKrg2M-x9DjPFoColakVzxo2mwDPQmcmnAKC1RAaY0Rk1fcYEEzpHKsSIXB9-2-A_dhi7oraxROdUg34XC0EhZ0Azua_yQ7UMPsaAVdEGW6vwVTBa7OEWPdziCLc4wO1HV8f_na7R_E1-UYpv9m15KQ</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Sun, Shuchun</creator><creator>Xu, Pei</creator><creator>Buchweitz, Nathan</creator><creator>Hill, Cherice N</creator><creator>Ahmadi, Farhad</creator><creator>Wilson, Marshall B</creator><creator>Mei, Angela</creator><creator>She, Xin</creator><creator>Sagl, Benedikt</creator><creator>Slate, Elizabeth H</creator><creator>Lee, Janice S</creator><creator>Wu, Yongren</creator><creator>Yao, Hai</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240711</creationdate><title>Explainable deep learning and biomechanical modeling for TMJ disorder morphological risk factors</title><author>Sun, Shuchun ; Xu, Pei ; Buchweitz, Nathan ; Hill, Cherice N ; Ahmadi, Farhad ; Wilson, Marshall B ; Mei, Angela ; She, Xin ; Sagl, Benedikt ; Slate, Elizabeth H ; Lee, Janice S ; Wu, Yongren ; Yao, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-32bd6ec22976a17fc8eba0912db07247b4d95777bb8e17e4060d2db1313b9e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Biomechanical Phenomena</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Risk Factors</topic><topic>Temporomandibular Joint - pathology</topic><topic>Temporomandibular Joint - physiopathology</topic><topic>Temporomandibular Joint Disorders - pathology</topic><topic>Temporomandibular Joint Disorders - physiopathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shuchun</creatorcontrib><creatorcontrib>Xu, Pei</creatorcontrib><creatorcontrib>Buchweitz, Nathan</creatorcontrib><creatorcontrib>Hill, Cherice N</creatorcontrib><creatorcontrib>Ahmadi, Farhad</creatorcontrib><creatorcontrib>Wilson, Marshall B</creatorcontrib><creatorcontrib>Mei, Angela</creatorcontrib><creatorcontrib>She, Xin</creatorcontrib><creatorcontrib>Sagl, Benedikt</creatorcontrib><creatorcontrib>Slate, Elizabeth H</creatorcontrib><creatorcontrib>Lee, Janice S</creatorcontrib><creatorcontrib>Wu, Yongren</creatorcontrib><creatorcontrib>Yao, Hai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shuchun</au><au>Xu, Pei</au><au>Buchweitz, Nathan</au><au>Hill, Cherice N</au><au>Ahmadi, Farhad</au><au>Wilson, Marshall B</au><au>Mei, Angela</au><au>She, Xin</au><au>Sagl, Benedikt</au><au>Slate, Elizabeth H</au><au>Lee, Janice S</au><au>Wu, Yongren</au><au>Yao, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explainable deep learning and biomechanical modeling for TMJ disorder morphological risk factors</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>9</volume><issue>16</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis, development of targeted prevention, and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analyses of disease data sets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through participant-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the "mechanism unknown" limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical data sets by providing the crucial biomechanical context.</abstract><cop>United States</cop><pmid>38990647</pmid><doi>10.1172/jci.insight.178578</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2024-07, Vol.9 (16)
issn 2379-3708
2379-3708
language eng
recordid cdi_proquest_miscellaneous_3079170483
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Biomechanical Phenomena
Deep Learning
Female
Humans
Male
Risk Factors
Temporomandibular Joint - pathology
Temporomandibular Joint - physiopathology
Temporomandibular Joint Disorders - pathology
Temporomandibular Joint Disorders - physiopathology
Young Adult
title Explainable deep learning and biomechanical modeling for TMJ disorder morphological risk factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explainable%20deep%20learning%20and%20biomechanical%20modeling%20for%20TMJ%20disorder%20morphological%20risk%20factors&rft.jtitle=JCI%20insight&rft.au=Sun,%20Shuchun&rft.date=2024-07-11&rft.volume=9&rft.issue=16&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.178578&rft_dat=%3Cproquest_cross%3E3079170483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079170483&rft_id=info:pmid/38990647&rfr_iscdi=true