Hemodynamic Characteristics of a Tortuous Microvessel Using High‐Fidelity Red Blood Cell Resolved Simulations
ABSTRACT Objective Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three‐dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important qu...
Gespeichert in:
Veröffentlicht in: | Microcirculation (New York, N.Y. 1994) N.Y. 1994), 2024-10, Vol.31 (7), p.e12875-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e12875 |
container_title | Microcirculation (New York, N.Y. 1994) |
container_volume | 31 |
creator | Hossain, Mir Md Nasim Hu, Nien‐Wen Kazempour, Ali Murfee, Walter L. Balogh, Peter |
description | ABSTRACT
Objective
Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three‐dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near‐wall cell‐free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel.
Methods
RBC‐resolved simulations were performed using an immersed boundary method‐based 3D fluid dynamics solver. A representative tortuous microvessel was selected from a stimulated angiogenic network obtained from imaging of the rat mesentery and digitally reconstructed for the simulations. The representative microvessel was a venule with a diameter of approximately 20 μm. The model assumes a constant diameter along the vessel length and does not consider variations due to endothelial cell shapes or the endothelial surface layer.
Results
Microvessel tortuosity was observed to increase blood apparent viscosity compared to a straight tube by up to 26%. WSS spatial variations in high curvature regions reached 23.6 dyne/cm2 over the vessel cross‐section. The magnitudes of WSS and CFL thickness variations due to tortuosity were strongly influenced by shear rate and negligibly influenced by tube hematocrit levels.
Conclusions
New findings from this work reveal unique tortuosity‐dependent hemodynamic characteristics over a range of conditions. The results provide new thought‐provoking information to better understand the contribution of tortuous vessels in physiological and pathological processes and help improve reduced‐order models. |
doi_str_mv | 10.1111/micc.12875 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3078719404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078719404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2465-e2396cad4d8952d3289ef20a6705bf216acc7dff72c2a668467eef38d96ddf883</originalsourceid><addsrcrecordid>eNp9kc9OFTEUxhsjEUQ3PoBp4saQDLadmf5ZykS8JBAThXVT2lMo6UyxncHcnY_AM_ok9nLBBQu7Oe3JL985_T6E3lFySOv5NAZrDymTon-B9mjfqUYKql7WOxFto7iUu-h1KTeEECmZeoV2W6mkUkTsobSCMbn1ZKoIHq5NNnaGHMocbMHJY4PPU56XtBR8FmxOd1AKRHxRwnSFV-Hq-s_v--PgIIZ5jb-Dw0cxJYcHiLE-S4p3tfcjjEs0c0hTeYN2vIkF3j7WfXRx_OV8WDWn376eDJ9PG8s63jfAWsWtcZ2TqmeuZVKBZ8RwQfpLzyg31grnvWCWGc5lxwWAb6VT3DkvZbuPPm51b3P6uUCZ9RiKrVuZCepndEvExqSOdBX98Ay9SUue6na6pbTndRrpK3WwpaoJpWTw-jaH0eS1pkRvYtCbGPRDDBV-_yi5XI7g_qFPvleAboFfIcL6P1L67GQYtqJ_AR17lDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115621605</pqid></control><display><type>article</type><title>Hemodynamic Characteristics of a Tortuous Microvessel Using High‐Fidelity Red Blood Cell Resolved Simulations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Hossain, Mir Md Nasim ; Hu, Nien‐Wen ; Kazempour, Ali ; Murfee, Walter L. ; Balogh, Peter</creator><creatorcontrib>Hossain, Mir Md Nasim ; Hu, Nien‐Wen ; Kazempour, Ali ; Murfee, Walter L. ; Balogh, Peter</creatorcontrib><description>ABSTRACT
Objective
Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three‐dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near‐wall cell‐free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel.
Methods
RBC‐resolved simulations were performed using an immersed boundary method‐based 3D fluid dynamics solver. A representative tortuous microvessel was selected from a stimulated angiogenic network obtained from imaging of the rat mesentery and digitally reconstructed for the simulations. The representative microvessel was a venule with a diameter of approximately 20 μm. The model assumes a constant diameter along the vessel length and does not consider variations due to endothelial cell shapes or the endothelial surface layer.
Results
Microvessel tortuosity was observed to increase blood apparent viscosity compared to a straight tube by up to 26%. WSS spatial variations in high curvature regions reached 23.6 dyne/cm2 over the vessel cross‐section. The magnitudes of WSS and CFL thickness variations due to tortuosity were strongly influenced by shear rate and negligibly influenced by tube hematocrit levels.
Conclusions
New findings from this work reveal unique tortuosity‐dependent hemodynamic characteristics over a range of conditions. The results provide new thought‐provoking information to better understand the contribution of tortuous vessels in physiological and pathological processes and help improve reduced‐order models.</description><identifier>ISSN: 1073-9688</identifier><identifier>ISSN: 1549-8719</identifier><identifier>EISSN: 1549-8719</identifier><identifier>DOI: 10.1111/micc.12875</identifier><identifier>PMID: 38989907</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>angiogenesis ; Animals ; apparent viscosity ; Blood ; Blood Viscosity ; cell‐free layer ; Computer Simulation ; curved microvessel ; curvy microvessels ; Erythrocytes - cytology ; Erythrocytes - physiology ; Fahraeus effect ; Hemodynamics ; Mesentery - blood supply ; microcirculation ; Microvessels - physiology ; Models, Cardiovascular ; Physiology ; Rats ; Simulation ; Stress, Mechanical ; time‐averaged WSS ; tortuous microvessels ; Viscosity ; WSS asymmetry</subject><ispartof>Microcirculation (New York, N.Y. 1994), 2024-10, Vol.31 (7), p.e12875-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2465-e2396cad4d8952d3289ef20a6705bf216acc7dff72c2a668467eef38d96ddf883</cites><orcidid>0000-0002-1503-4305 ; 0009-0000-1189-5100 ; 0000-0002-8247-4722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmicc.12875$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmicc.12875$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38989907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hossain, Mir Md Nasim</creatorcontrib><creatorcontrib>Hu, Nien‐Wen</creatorcontrib><creatorcontrib>Kazempour, Ali</creatorcontrib><creatorcontrib>Murfee, Walter L.</creatorcontrib><creatorcontrib>Balogh, Peter</creatorcontrib><title>Hemodynamic Characteristics of a Tortuous Microvessel Using High‐Fidelity Red Blood Cell Resolved Simulations</title><title>Microcirculation (New York, N.Y. 1994)</title><addtitle>Microcirculation</addtitle><description>ABSTRACT
Objective
Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three‐dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near‐wall cell‐free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel.
Methods
RBC‐resolved simulations were performed using an immersed boundary method‐based 3D fluid dynamics solver. A representative tortuous microvessel was selected from a stimulated angiogenic network obtained from imaging of the rat mesentery and digitally reconstructed for the simulations. The representative microvessel was a venule with a diameter of approximately 20 μm. The model assumes a constant diameter along the vessel length and does not consider variations due to endothelial cell shapes or the endothelial surface layer.
Results
Microvessel tortuosity was observed to increase blood apparent viscosity compared to a straight tube by up to 26%. WSS spatial variations in high curvature regions reached 23.6 dyne/cm2 over the vessel cross‐section. The magnitudes of WSS and CFL thickness variations due to tortuosity were strongly influenced by shear rate and negligibly influenced by tube hematocrit levels.
Conclusions
New findings from this work reveal unique tortuosity‐dependent hemodynamic characteristics over a range of conditions. The results provide new thought‐provoking information to better understand the contribution of tortuous vessels in physiological and pathological processes and help improve reduced‐order models.</description><subject>angiogenesis</subject><subject>Animals</subject><subject>apparent viscosity</subject><subject>Blood</subject><subject>Blood Viscosity</subject><subject>cell‐free layer</subject><subject>Computer Simulation</subject><subject>curved microvessel</subject><subject>curvy microvessels</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - physiology</subject><subject>Fahraeus effect</subject><subject>Hemodynamics</subject><subject>Mesentery - blood supply</subject><subject>microcirculation</subject><subject>Microvessels - physiology</subject><subject>Models, Cardiovascular</subject><subject>Physiology</subject><subject>Rats</subject><subject>Simulation</subject><subject>Stress, Mechanical</subject><subject>time‐averaged WSS</subject><subject>tortuous microvessels</subject><subject>Viscosity</subject><subject>WSS asymmetry</subject><issn>1073-9688</issn><issn>1549-8719</issn><issn>1549-8719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9OFTEUxhsjEUQ3PoBp4saQDLadmf5ZykS8JBAThXVT2lMo6UyxncHcnY_AM_ok9nLBBQu7Oe3JL985_T6E3lFySOv5NAZrDymTon-B9mjfqUYKql7WOxFto7iUu-h1KTeEECmZeoV2W6mkUkTsobSCMbn1ZKoIHq5NNnaGHMocbMHJY4PPU56XtBR8FmxOd1AKRHxRwnSFV-Hq-s_v--PgIIZ5jb-Dw0cxJYcHiLE-S4p3tfcjjEs0c0hTeYN2vIkF3j7WfXRx_OV8WDWn376eDJ9PG8s63jfAWsWtcZ2TqmeuZVKBZ8RwQfpLzyg31grnvWCWGc5lxwWAb6VT3DkvZbuPPm51b3P6uUCZ9RiKrVuZCepndEvExqSOdBX98Ay9SUue6na6pbTndRrpK3WwpaoJpWTw-jaH0eS1pkRvYtCbGPRDDBV-_yi5XI7g_qFPvleAboFfIcL6P1L67GQYtqJ_AR17lDY</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Hossain, Mir Md Nasim</creator><creator>Hu, Nien‐Wen</creator><creator>Kazempour, Ali</creator><creator>Murfee, Walter L.</creator><creator>Balogh, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1503-4305</orcidid><orcidid>https://orcid.org/0009-0000-1189-5100</orcidid><orcidid>https://orcid.org/0000-0002-8247-4722</orcidid></search><sort><creationdate>202410</creationdate><title>Hemodynamic Characteristics of a Tortuous Microvessel Using High‐Fidelity Red Blood Cell Resolved Simulations</title><author>Hossain, Mir Md Nasim ; Hu, Nien‐Wen ; Kazempour, Ali ; Murfee, Walter L. ; Balogh, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2465-e2396cad4d8952d3289ef20a6705bf216acc7dff72c2a668467eef38d96ddf883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>angiogenesis</topic><topic>Animals</topic><topic>apparent viscosity</topic><topic>Blood</topic><topic>Blood Viscosity</topic><topic>cell‐free layer</topic><topic>Computer Simulation</topic><topic>curved microvessel</topic><topic>curvy microvessels</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - physiology</topic><topic>Fahraeus effect</topic><topic>Hemodynamics</topic><topic>Mesentery - blood supply</topic><topic>microcirculation</topic><topic>Microvessels - physiology</topic><topic>Models, Cardiovascular</topic><topic>Physiology</topic><topic>Rats</topic><topic>Simulation</topic><topic>Stress, Mechanical</topic><topic>time‐averaged WSS</topic><topic>tortuous microvessels</topic><topic>Viscosity</topic><topic>WSS asymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mir Md Nasim</creatorcontrib><creatorcontrib>Hu, Nien‐Wen</creatorcontrib><creatorcontrib>Kazempour, Ali</creatorcontrib><creatorcontrib>Murfee, Walter L.</creatorcontrib><creatorcontrib>Balogh, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mir Md Nasim</au><au>Hu, Nien‐Wen</au><au>Kazempour, Ali</au><au>Murfee, Walter L.</au><au>Balogh, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemodynamic Characteristics of a Tortuous Microvessel Using High‐Fidelity Red Blood Cell Resolved Simulations</atitle><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle><addtitle>Microcirculation</addtitle><date>2024-10</date><risdate>2024</risdate><volume>31</volume><issue>7</issue><spage>e12875</spage><epage>n/a</epage><pages>e12875-n/a</pages><issn>1073-9688</issn><issn>1549-8719</issn><eissn>1549-8719</eissn><abstract>ABSTRACT
Objective
Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three‐dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near‐wall cell‐free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel.
Methods
RBC‐resolved simulations were performed using an immersed boundary method‐based 3D fluid dynamics solver. A representative tortuous microvessel was selected from a stimulated angiogenic network obtained from imaging of the rat mesentery and digitally reconstructed for the simulations. The representative microvessel was a venule with a diameter of approximately 20 μm. The model assumes a constant diameter along the vessel length and does not consider variations due to endothelial cell shapes or the endothelial surface layer.
Results
Microvessel tortuosity was observed to increase blood apparent viscosity compared to a straight tube by up to 26%. WSS spatial variations in high curvature regions reached 23.6 dyne/cm2 over the vessel cross‐section. The magnitudes of WSS and CFL thickness variations due to tortuosity were strongly influenced by shear rate and negligibly influenced by tube hematocrit levels.
Conclusions
New findings from this work reveal unique tortuosity‐dependent hemodynamic characteristics over a range of conditions. The results provide new thought‐provoking information to better understand the contribution of tortuous vessels in physiological and pathological processes and help improve reduced‐order models.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38989907</pmid><doi>10.1111/micc.12875</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1503-4305</orcidid><orcidid>https://orcid.org/0009-0000-1189-5100</orcidid><orcidid>https://orcid.org/0000-0002-8247-4722</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-9688 |
ispartof | Microcirculation (New York, N.Y. 1994), 2024-10, Vol.31 (7), p.e12875-n/a |
issn | 1073-9688 1549-8719 1549-8719 |
language | eng |
recordid | cdi_proquest_miscellaneous_3078719404 |
source | MEDLINE; Access via Wiley Online Library |
subjects | angiogenesis Animals apparent viscosity Blood Blood Viscosity cell‐free layer Computer Simulation curved microvessel curvy microvessels Erythrocytes - cytology Erythrocytes - physiology Fahraeus effect Hemodynamics Mesentery - blood supply microcirculation Microvessels - physiology Models, Cardiovascular Physiology Rats Simulation Stress, Mechanical time‐averaged WSS tortuous microvessels Viscosity WSS asymmetry |
title | Hemodynamic Characteristics of a Tortuous Microvessel Using High‐Fidelity Red Blood Cell Resolved Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemodynamic%20Characteristics%20of%20a%20Tortuous%20Microvessel%20Using%20High%E2%80%90Fidelity%20Red%20Blood%20Cell%20Resolved%20Simulations&rft.jtitle=Microcirculation%20(New%20York,%20N.Y.%201994)&rft.au=Hossain,%20Mir%C2%A0Md%C2%A0Nasim&rft.date=2024-10&rft.volume=31&rft.issue=7&rft.spage=e12875&rft.epage=n/a&rft.pages=e12875-n/a&rft.issn=1073-9688&rft.eissn=1549-8719&rft_id=info:doi/10.1111/micc.12875&rft_dat=%3Cproquest_cross%3E3078719404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115621605&rft_id=info:pmid/38989907&rfr_iscdi=true |