ENTIMOS: Decision Support Tool Highlights Potential Impact of Non-intravenous Therapies for Multiple Sclerosis on Patient Care via Clinical Scenario Simulation

Introduction Administration of intravenous (IV), high-efficacy treatments (HETs) for the treatment of multiple sclerosis (MS) poses a high resourcing and planning burden on infusion centres, resulting in treatment delays that may increase the risk of breakthrough disease activity. Simulation tools c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PharmacoEconomics - Open 2024-09, Vol.8 (5), p.755-764
Hauptverfasser: Nicholas, Richard, Scalfaro, Erik, Dorsey, Rachel, Angehrn, Zuzanna, Banhazi, Judit, Brennan, Roisin, Adlard, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Administration of intravenous (IV), high-efficacy treatments (HETs) for the treatment of multiple sclerosis (MS) poses a high resourcing and planning burden on infusion centres, resulting in treatment delays that may increase the risk of breakthrough disease activity. Simulation tools can be used to systematically analyse capacity scenarios and identify and better understand constraints, therefore enabling decision-makers to optimise patient care. We have previously applied ENTIMOS, a discrete event simulation model, to assess scenarios of patient flow and care delivery using real-life data inputs from the neurology infusion suite at Charing Cross Hospital London. The model predicted that, given current capacity and projected demand, patients would experience high-risk treatment delays within 30 months. Objective This study aimed to address key healthcare challenges for MS patient care management as seen from a neurologist’s perspective. We used ENTIMOS to predict the impact of several distinct and clinically plausible scenarios on patient waiting times at the same MS infusion suite and to quantify mitigation strategies needed to assure continuity of care. Methods We used real-world experience of an expert neurologist to identify five clinical scenarios: (1) switching patients to a subcutaneous (SC) MS treatment of the same therapeutic agent, in the same hospital setting; (2) extending opening times to the weekend; (3) reducing the number of infusion chairs (to simulate social distancing measures applied during the coronavirus disease 2019 [COVID-19] pandemic); (4) increasing demand for infusions; and (5) increasing the scheduling approval time. Patient waiting time for next due infusion and time to high-risk treatment delays (≥ 30 days) were the main analysed model outputs. Previously published base case results were used as reference. All hypothetical scenarios were run over a 3-year horizon (with the exception of scenario 1, which was run over a 3- and 5-year horizon). Strategies to mitigate treatment delays were analysed and discussed. Results Switching 50% of patients to SC treatment of the same therapeutic agent administered in hospital postponed the predicted high-risk treatment delays to shortly beyond the 3-year simulation timeframe (month 38). Weekend opening reduced waiting times from 20 days to 4 days and prevented treatment delays, however, at elevated labour costs. Reducing the infusion chairs increased waiting time to 53 days on
ISSN:2509-4262
2509-4254
2509-4254
DOI:10.1007/s41669-024-00493-8