Response of changes in lake area to drought and land use change

The lake area is a crucial parameter that characterizes the state of a lake. Under the dual pressures of climate change and human activity, the magnitude and frequency of changes in lake areas become more pronounced. This process poses a serious threat to the local ecological environment. In this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-10, Vol.947, p.174638, Article 174638
Hauptverfasser: Luo, Yi, Chen, Rixiang, Yang, Kun, Zhou, Xiaolu, Jia, Tingfang, Shang, Chunxue, Pei, Xingfang, Wang, Qingqing, Li, Dingpu, Peng, Changqing, Guo, Hairui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 174638
container_title The Science of the total environment
container_volume 947
creator Luo, Yi
Chen, Rixiang
Yang, Kun
Zhou, Xiaolu
Jia, Tingfang
Shang, Chunxue
Pei, Xingfang
Wang, Qingqing
Li, Dingpu
Peng, Changqing
Guo, Hairui
description The lake area is a crucial parameter that characterizes the state of a lake. Under the dual pressures of climate change and human activity, the magnitude and frequency of changes in lake areas become more pronounced. This process poses a serious threat to the local ecological environment. In this study, we constructed a lake water extraction model (LakeNet) based on a fully convolutional neural network. We extracted and analyzed the spatiotemporal characteristics of the area of nine major lakes from 1987 to 2022, as well as the driving factors behind these changes. Our results indicate that: 1) LakeNet exhibits high extraction accuracy and can remove some clouds. 2) The area of the nine major lakes shows a fluctuating downward trend (−8.11km2/10a), with drought and land use changes identified as significant driving forces behind the changes in lake boundaries, drought events caused the lake area to decrease, and the expansion of cropland further reduced the lake area. 3) Due to variations in lake area, the impact of drought on the area of the nine major lakes exhibits a lag effect, smaller lakes are likely to respond more quickly to drought. [Display omitted] •Proposed a lake boundary extraction algorithm based on fully convolutional neural networks.•Drought and changes in land use are the primary driving factors affecting the changes in lake boundaries.•The difference of lake area and geographical location leads to the difference of lake response to drought.
doi_str_mv 10.1016/j.scitotenv.2024.174638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3078715048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724047879</els_id><sourcerecordid>3078715048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-38c5b7e9f57fc62bc0156739cce7a81ceccb856fb177575772b900f1f08dbabb3</originalsourceid><addsrcrecordid>eNqFkMtOAyEUhonR2Fp9BWXpZirMhcvKNI23pImJ0TUB5tBObYcKM018e2lGuxUSWPCdc_g_hG4omVJC2d16Gm3T-Q7a_TQneTmlvGSFOEFjKrjMKMnZKRoTUopMMslH6CLGNUmLC3qORoWQgjEpxuj-DeLOtxGwd9iudLuEiJsWb_QnYB1A487jOvh-ueqwbuv0kI4-8QN8ic6c3kS4-r0n6OPx4X3-nC1en17ms0Vm85J3WSFsZThIV3FnWW4soRXjhbQWuBbUgrVGVMwZynmVNs-NJMRRR0RttDHFBN0OfXfBf_UQO7VtooVN-g74PqoiJeO0SoETygfUBh9jAKd2odnq8K0oUQd7aq2O9tTBnhrspcrr3yG92UJ9rPvTlYDZAECKum8gHBpBa6FuAthO1b75d8gPXrmE0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078715048</pqid></control><display><type>article</type><title>Response of changes in lake area to drought and land use change</title><source>Access via ScienceDirect (Elsevier)</source><creator>Luo, Yi ; Chen, Rixiang ; Yang, Kun ; Zhou, Xiaolu ; Jia, Tingfang ; Shang, Chunxue ; Pei, Xingfang ; Wang, Qingqing ; Li, Dingpu ; Peng, Changqing ; Guo, Hairui</creator><creatorcontrib>Luo, Yi ; Chen, Rixiang ; Yang, Kun ; Zhou, Xiaolu ; Jia, Tingfang ; Shang, Chunxue ; Pei, Xingfang ; Wang, Qingqing ; Li, Dingpu ; Peng, Changqing ; Guo, Hairui</creatorcontrib><description>The lake area is a crucial parameter that characterizes the state of a lake. Under the dual pressures of climate change and human activity, the magnitude and frequency of changes in lake areas become more pronounced. This process poses a serious threat to the local ecological environment. In this study, we constructed a lake water extraction model (LakeNet) based on a fully convolutional neural network. We extracted and analyzed the spatiotemporal characteristics of the area of nine major lakes from 1987 to 2022, as well as the driving factors behind these changes. Our results indicate that: 1) LakeNet exhibits high extraction accuracy and can remove some clouds. 2) The area of the nine major lakes shows a fluctuating downward trend (−8.11km2/10a), with drought and land use changes identified as significant driving forces behind the changes in lake boundaries, drought events caused the lake area to decrease, and the expansion of cropland further reduced the lake area. 3) Due to variations in lake area, the impact of drought on the area of the nine major lakes exhibits a lag effect, smaller lakes are likely to respond more quickly to drought. [Display omitted] •Proposed a lake boundary extraction algorithm based on fully convolutional neural networks.•Drought and changes in land use are the primary driving factors affecting the changes in lake boundaries.•The difference of lake area and geographical location leads to the difference of lake response to drought.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.174638</identifier><identifier>PMID: 38986698</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Deep learning ; Drought ; Lake area ; Land use</subject><ispartof>The Science of the total environment, 2024-10, Vol.947, p.174638, Article 174638</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-38c5b7e9f57fc62bc0156739cce7a81ceccb856fb177575772b900f1f08dbabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2024.174638$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38986698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Chen, Rixiang</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Zhou, Xiaolu</creatorcontrib><creatorcontrib>Jia, Tingfang</creatorcontrib><creatorcontrib>Shang, Chunxue</creatorcontrib><creatorcontrib>Pei, Xingfang</creatorcontrib><creatorcontrib>Wang, Qingqing</creatorcontrib><creatorcontrib>Li, Dingpu</creatorcontrib><creatorcontrib>Peng, Changqing</creatorcontrib><creatorcontrib>Guo, Hairui</creatorcontrib><title>Response of changes in lake area to drought and land use change</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The lake area is a crucial parameter that characterizes the state of a lake. Under the dual pressures of climate change and human activity, the magnitude and frequency of changes in lake areas become more pronounced. This process poses a serious threat to the local ecological environment. In this study, we constructed a lake water extraction model (LakeNet) based on a fully convolutional neural network. We extracted and analyzed the spatiotemporal characteristics of the area of nine major lakes from 1987 to 2022, as well as the driving factors behind these changes. Our results indicate that: 1) LakeNet exhibits high extraction accuracy and can remove some clouds. 2) The area of the nine major lakes shows a fluctuating downward trend (−8.11km2/10a), with drought and land use changes identified as significant driving forces behind the changes in lake boundaries, drought events caused the lake area to decrease, and the expansion of cropland further reduced the lake area. 3) Due to variations in lake area, the impact of drought on the area of the nine major lakes exhibits a lag effect, smaller lakes are likely to respond more quickly to drought. [Display omitted] •Proposed a lake boundary extraction algorithm based on fully convolutional neural networks.•Drought and changes in land use are the primary driving factors affecting the changes in lake boundaries.•The difference of lake area and geographical location leads to the difference of lake response to drought.</description><subject>Deep learning</subject><subject>Drought</subject><subject>Lake area</subject><subject>Land use</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAyEUhonR2Fp9BWXpZirMhcvKNI23pImJ0TUB5tBObYcKM018e2lGuxUSWPCdc_g_hG4omVJC2d16Gm3T-Q7a_TQneTmlvGSFOEFjKrjMKMnZKRoTUopMMslH6CLGNUmLC3qORoWQgjEpxuj-DeLOtxGwd9iudLuEiJsWb_QnYB1A487jOvh-ueqwbuv0kI4-8QN8ic6c3kS4-r0n6OPx4X3-nC1en17ms0Vm85J3WSFsZThIV3FnWW4soRXjhbQWuBbUgrVGVMwZynmVNs-NJMRRR0RttDHFBN0OfXfBf_UQO7VtooVN-g74PqoiJeO0SoETygfUBh9jAKd2odnq8K0oUQd7aq2O9tTBnhrspcrr3yG92UJ9rPvTlYDZAECKum8gHBpBa6FuAthO1b75d8gPXrmE0Q</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Luo, Yi</creator><creator>Chen, Rixiang</creator><creator>Yang, Kun</creator><creator>Zhou, Xiaolu</creator><creator>Jia, Tingfang</creator><creator>Shang, Chunxue</creator><creator>Pei, Xingfang</creator><creator>Wang, Qingqing</creator><creator>Li, Dingpu</creator><creator>Peng, Changqing</creator><creator>Guo, Hairui</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241015</creationdate><title>Response of changes in lake area to drought and land use change</title><author>Luo, Yi ; Chen, Rixiang ; Yang, Kun ; Zhou, Xiaolu ; Jia, Tingfang ; Shang, Chunxue ; Pei, Xingfang ; Wang, Qingqing ; Li, Dingpu ; Peng, Changqing ; Guo, Hairui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-38c5b7e9f57fc62bc0156739cce7a81ceccb856fb177575772b900f1f08dbabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Drought</topic><topic>Lake area</topic><topic>Land use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Chen, Rixiang</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Zhou, Xiaolu</creatorcontrib><creatorcontrib>Jia, Tingfang</creatorcontrib><creatorcontrib>Shang, Chunxue</creatorcontrib><creatorcontrib>Pei, Xingfang</creatorcontrib><creatorcontrib>Wang, Qingqing</creatorcontrib><creatorcontrib>Li, Dingpu</creatorcontrib><creatorcontrib>Peng, Changqing</creatorcontrib><creatorcontrib>Guo, Hairui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yi</au><au>Chen, Rixiang</au><au>Yang, Kun</au><au>Zhou, Xiaolu</au><au>Jia, Tingfang</au><au>Shang, Chunxue</au><au>Pei, Xingfang</au><au>Wang, Qingqing</au><au>Li, Dingpu</au><au>Peng, Changqing</au><au>Guo, Hairui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of changes in lake area to drought and land use change</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>947</volume><spage>174638</spage><pages>174638-</pages><artnum>174638</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>The lake area is a crucial parameter that characterizes the state of a lake. Under the dual pressures of climate change and human activity, the magnitude and frequency of changes in lake areas become more pronounced. This process poses a serious threat to the local ecological environment. In this study, we constructed a lake water extraction model (LakeNet) based on a fully convolutional neural network. We extracted and analyzed the spatiotemporal characteristics of the area of nine major lakes from 1987 to 2022, as well as the driving factors behind these changes. Our results indicate that: 1) LakeNet exhibits high extraction accuracy and can remove some clouds. 2) The area of the nine major lakes shows a fluctuating downward trend (−8.11km2/10a), with drought and land use changes identified as significant driving forces behind the changes in lake boundaries, drought events caused the lake area to decrease, and the expansion of cropland further reduced the lake area. 3) Due to variations in lake area, the impact of drought on the area of the nine major lakes exhibits a lag effect, smaller lakes are likely to respond more quickly to drought. [Display omitted] •Proposed a lake boundary extraction algorithm based on fully convolutional neural networks.•Drought and changes in land use are the primary driving factors affecting the changes in lake boundaries.•The difference of lake area and geographical location leads to the difference of lake response to drought.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38986698</pmid><doi>10.1016/j.scitotenv.2024.174638</doi></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2024-10, Vol.947, p.174638, Article 174638
issn 0048-9697
1879-1026
1879-1026
language eng
recordid cdi_proquest_miscellaneous_3078715048
source Access via ScienceDirect (Elsevier)
subjects Deep learning
Drought
Lake area
Land use
title Response of changes in lake area to drought and land use change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20changes%20in%20lake%20area%20to%20drought%20and%20land%20use%20change&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Luo,%20Yi&rft.date=2024-10-15&rft.volume=947&rft.spage=174638&rft.pages=174638-&rft.artnum=174638&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.174638&rft_dat=%3Cproquest_cross%3E3078715048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078715048&rft_id=info:pmid/38986698&rft_els_id=S0048969724047879&rfr_iscdi=true