Running sprint force-velocity-power profile obtained with a low-cost and low frame rate acquisition video technique: reliability and concurrent validity
The Force-velocity (F-v) and Power-velocity (P-v) relationships quantify athlete's horizontal force production capacities during sprinting. Efforts are underway to enhance ecological validity for practitioners and sports coaches. This study provides detailed data comparison of a low frames per...
Gespeichert in:
Veröffentlicht in: | Sports biomechanics 2024-07, p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Force-velocity (F-v) and Power-velocity (P-v) relationships quantify athlete's horizontal force production capacities during sprinting. Efforts are underway to enhance ecological validity for practitioners and sports coaches. This study provides detailed data comparison of a low frames per second setup (30 Hz; FPS
) with splits from a high FPS camera to derive F-v and P-v relationships. Sixty-six sprints performed by 11 university track and field athletes (6 male, 5 female) were evaluated. Data were recorded using FPS
, photocells, and a high-speed camera (240 Hz; MySprint). In the FPS
setup, bias was 0.17s, and Limits of agreement was 0.09s compared to photocells. ICC was 1.00, and the coefficient of variation (CV) was 1.0% [0.8-1.1%]. Time acquisition comparison between MySprint and FPS
setups revealed high consistency (ICC = 0.99) and low CV (2.9% [2.8-3.1%]). F-v profile variables exhibited biases from trivial to small, with ICC ranging from moderate to nearly perfect. CV ranged from 2.7% to 11.8%, and improved using the average of three sprints (CV between 1.8% and 8.6%). The 'simple method' applied to data from the low FPS video setup yielded kinetic and kinematic parameters comparable to those obtained by the validated previous method and photocells. |
---|---|
ISSN: | 1476-3141 1752-6116 1752-6116 |
DOI: | 10.1080/14763141.2024.2374882 |