Evolving Arctic maritime hazards: Declining sea ice and rising waves in the Northwest Passage

The ongoing and projected retreat of Arctic sea ice has garnered international interest toward the utilization of Arctic maritime corridors for shipping, tourism, and development. Yet, with potential for increasing traffic in Arctic regions, it's important to consider additional environmental v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-07, Vol.121 (29), p.e2400355121
Hauptverfasser: Henke, Martin T, Miesse, Tyler, de Souza de Lima, Andre, Ferreira, Celso, Ravens, Thomas, Pundt, Ralph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing and projected retreat of Arctic sea ice has garnered international interest toward the utilization of Arctic maritime corridors for shipping, tourism, and development. Yet, with potential for increasing traffic in Arctic regions, it's important to consider additional environmental variables affected by climate change which may threaten maritime operations. Here, we use four climate model projections to produce ocean wave simulations and investigate the future magnitude and seasonality of sea ice risk coupled with wave hazards. Analyzing the potential 5 mo shipping season spanning July to November along the Northwest Passage maritime route between 2020 and 2070, our results show a substantial decline in sea ice risk over the analysis time period, resulting in near open-water conditions along the route for a 5 mo period by 2070. However, as seasonal ice coverage retreats, there is a significant upward trend in wave heights along the route during July and November, with the timing of the greatest wave height shifting away from September toward later in the season. This result is pertinent as the possibility of seasonally unprecedented extreme waves coupled with subfreezing late fall temperatures makes for an especially hazardous environment, thus emphasizing the importance of considering the interaction between evolving sea ice and interdependent hazards when predicting the risks and challenges faced by Arctic maritime operations.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2400355121