Bi3O2.5Se2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer
Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-08, Vol.16 (31), p.14766-14774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14774 |
---|---|
container_issue | 31 |
container_start_page | 14766 |
container_title | Nanoscale |
container_volume | 16 |
creator | Xinyue Dong Hou, Yameng Deng, Chaoyue Wu, Jinxiong Fu, Huixia |
description | Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically 0.5 e−) and almost the highest electrostatic potential difference (ΔΦ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]−) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼1014 cm−2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors. |
doi_str_mv | 10.1039/d4nr01758g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076763960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076763960</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-d86388dcab3ca8c10118a5c1c349588bdcbbb512cce53b3271ccd3079a2f392a3</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpLPwCSywsKbYvcWw2QHxJlToAc-XYTuMqtYvtqOq_J1DEwHR3rx69wyF0ScmMEpA3pvSR0LoSqyM0YaQkBUDNjv92Xp6is5TWhHAJHCZouHewYLPqzbJbrHDehcK4jfXJBa963LlVV2xC43qX93gbehVxshungzeDziHincsdHuOVxc5nG3u1txErbw5nq7Qbe3T3I3JUPrU2nqOTVvXJXvzOKfp4enx_eCnmi-fXh7t5saUlz4URHIQwWjWgldCUUCpUpamGUlZCNEY3TVNRprWtoAFWU60NkFoq1oJkCqbo-tC7jeFzsCkvNy5p2_fK2zCk5Wh5zUFyMtKrf3Qdhjj-4FtJBkxSxuELbfRsSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092329126</pqid></control><display><type>article</type><title>Bi3O2.5Se2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xinyue Dong ; Hou, Yameng ; Deng, Chaoyue ; Wu, Jinxiong ; Fu, Huixia</creator><creatorcontrib>Xinyue Dong ; Hou, Yameng ; Deng, Chaoyue ; Wu, Jinxiong ; Fu, Huixia</creatorcontrib><description>Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer Bi3O2.5Se2 semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm2 V−1 s−1 for the monolayer). Thanks to its unique non-neutral layered structure, few-layer Bi3O2.5Se2 contributes to a substantial interlayer charge transfer (>0.5 e−) and almost the highest electrostatic potential difference (ΔΦ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]−) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼1014 cm−2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01758g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier mobility ; Charge transfer ; Dipoles ; Doping ; Electric fields ; First principles ; Graphene ; Interlayers ; Layered materials ; Low dimensional semiconductors ; Polarity ; Room temperature ; Semiconductors ; Two dimensional materials</subject><ispartof>Nanoscale, 2024-08, Vol.16 (31), p.14766-14774</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xinyue Dong</creatorcontrib><creatorcontrib>Hou, Yameng</creatorcontrib><creatorcontrib>Deng, Chaoyue</creatorcontrib><creatorcontrib>Wu, Jinxiong</creatorcontrib><creatorcontrib>Fu, Huixia</creatorcontrib><title>Bi3O2.5Se2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer</title><title>Nanoscale</title><description>Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer Bi3O2.5Se2 semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm2 V−1 s−1 for the monolayer). Thanks to its unique non-neutral layered structure, few-layer Bi3O2.5Se2 contributes to a substantial interlayer charge transfer (>0.5 e−) and almost the highest electrostatic potential difference (ΔΦ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]−) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼1014 cm−2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.</description><subject>Carrier mobility</subject><subject>Charge transfer</subject><subject>Dipoles</subject><subject>Doping</subject><subject>Electric fields</subject><subject>First principles</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Layered materials</subject><subject>Low dimensional semiconductors</subject><subject>Polarity</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Two dimensional materials</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQpLPwCSywsKbYvcWw2QHxJlToAc-XYTuMqtYvtqOq_J1DEwHR3rx69wyF0ScmMEpA3pvSR0LoSqyM0YaQkBUDNjv92Xp6is5TWhHAJHCZouHewYLPqzbJbrHDehcK4jfXJBa963LlVV2xC43qX93gbehVxshungzeDziHincsdHuOVxc5nG3u1txErbw5nq7Qbe3T3I3JUPrU2nqOTVvXJXvzOKfp4enx_eCnmi-fXh7t5saUlz4URHIQwWjWgldCUUCpUpamGUlZCNEY3TVNRprWtoAFWU60NkFoq1oJkCqbo-tC7jeFzsCkvNy5p2_fK2zCk5Wh5zUFyMtKrf3Qdhjj-4FtJBkxSxuELbfRsSA</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Xinyue Dong</creator><creator>Hou, Yameng</creator><creator>Deng, Chaoyue</creator><creator>Wu, Jinxiong</creator><creator>Fu, Huixia</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240813</creationdate><title>Bi3O2.5Se2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer</title><author>Xinyue Dong ; Hou, Yameng ; Deng, Chaoyue ; Wu, Jinxiong ; Fu, Huixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-d86388dcab3ca8c10118a5c1c349588bdcbbb512cce53b3271ccd3079a2f392a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Charge transfer</topic><topic>Dipoles</topic><topic>Doping</topic><topic>Electric fields</topic><topic>First principles</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Layered materials</topic><topic>Low dimensional semiconductors</topic><topic>Polarity</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xinyue Dong</creatorcontrib><creatorcontrib>Hou, Yameng</creatorcontrib><creatorcontrib>Deng, Chaoyue</creatorcontrib><creatorcontrib>Wu, Jinxiong</creatorcontrib><creatorcontrib>Fu, Huixia</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xinyue Dong</au><au>Hou, Yameng</au><au>Deng, Chaoyue</au><au>Wu, Jinxiong</au><au>Fu, Huixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi3O2.5Se2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer</atitle><jtitle>Nanoscale</jtitle><date>2024-08-13</date><risdate>2024</risdate><volume>16</volume><issue>31</issue><spage>14766</spage><epage>14774</epage><pages>14766-14774</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer Bi3O2.5Se2 semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm2 V−1 s−1 for the monolayer). Thanks to its unique non-neutral layered structure, few-layer Bi3O2.5Se2 contributes to a substantial interlayer charge transfer (>0.5 e−) and almost the highest electrostatic potential difference (ΔΦ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]−) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼1014 cm−2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr01758g</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-08, Vol.16 (31), p.14766-14774 |
issn | 2040-3364 2040-3372 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_3076763960 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carrier mobility Charge transfer Dipoles Doping Electric fields First principles Graphene Interlayers Layered materials Low dimensional semiconductors Polarity Room temperature Semiconductors Two dimensional materials |
title | Bi3O2.5Se2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi3O2.5Se2:%20a%20two-dimensional%20high-mobility%20polar%20semiconductor%20with%20large%20interlayer%20and%20interfacial%20charge%20transfer&rft.jtitle=Nanoscale&rft.au=Xinyue%20Dong&rft.date=2024-08-13&rft.volume=16&rft.issue=31&rft.spage=14766&rft.epage=14774&rft.pages=14766-14774&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01758g&rft_dat=%3Cproquest%3E3076763960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092329126&rft_id=info:pmid/&rfr_iscdi=true |