High‐throughput G protein‐coupled receptor‐based autocrine screening for secondary metabolite production in yeast
Biosensors are valuable tools in accelerating the test phase of the design‐build‐test‐learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein‐coupled receptor (GPCR)‐based biosensors enable cells to sense a wide array of molecules and environmental conditi...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2024-10, Vol.121 (10), p.3283-3296 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3296 |
---|---|
container_issue | 10 |
container_start_page | 3283 |
container_title | Biotechnology and bioengineering |
container_volume | 121 |
creator | Saleski, Tatyana E. Peng, Huadong Lengger, Bettina Wang, Jinglin Jensen, Michael Krogh Jensen, Emil D. |
description | Biosensors are valuable tools in accelerating the test phase of the design‐build‐test‐learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein‐coupled receptor (GPCR)‐based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR‐based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water‐in‐oil‐in‐water double emulsion droplets, combined with analysis and sorting via a fluorescence‐activated cell sorting machine. Employing tryptamine and serotonin as proof‐of‐concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin‐producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
Construction of self‐sensing yeast equipped with a G protein‐coupled receptor‐based biosensor module and a bioproduction module facilitates a streamlined screening strategy to identify high‐producing variants. We demonstrate this approach in three formats by which to link genotype with extracellular production phenotype: (1) microtiter plates, (2) colony screening, and (3) encapsulation in double emulsion microdroplets combined with fluorescence‐activated cell sorting. |
doi_str_mv | 10.1002/bit.28797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076763814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114397765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2787-54542af6e62363a56a4a8e454764aeec65db4cc23aff38c2e4dbbcd2fd665d263</originalsourceid><addsrcrecordid>eNp1kctK7TAUhoMc0e1l4AtI4Ex0UE2TNmmHHvEGghMdhzRd3TvSndRckD07j-Az-iRGtzoQHIX86-NjJT9CByU5KQmhp52JJ7QRrdhAs5K0oiC0JX_QjBDCC1a3dBvthPCYr6LhfAtts6YVrBR8hp6vzXzx-v8lLrxL88WUIr7Ck3cRjM2xdmkaocceNEzR-Rx1KuRApei0NxZw0B7AGjvHg_M4gHa2V36FlxBV50YT4d3XJx2Ns9hYvAIV4h7aHNQYYP_z3EUPlxf359fF7d3VzfnZbaGpaERRV3VF1cCBU8aZqrmqVAM5FLxSAJrXfVdpTZkaBtZoClXfdbqnQ8_ziHK2i47W3rzDU4IQ5dIEDeOoLLgUJCOCC86assro3x_oo0ve5u0kK_O8FYLXmTpeU9q7EDwMcvJmmR8sSyLf25C5DfnRRmYPP42pW0L_TX59fwZO18CzGWH1u0n-u7lfK98AQgCZeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114397765</pqid></control><display><type>article</type><title>High‐throughput G protein‐coupled receptor‐based autocrine screening for secondary metabolite production in yeast</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Saleski, Tatyana E. ; Peng, Huadong ; Lengger, Bettina ; Wang, Jinglin ; Jensen, Michael Krogh ; Jensen, Emil D.</creator><creatorcontrib>Saleski, Tatyana E. ; Peng, Huadong ; Lengger, Bettina ; Wang, Jinglin ; Jensen, Michael Krogh ; Jensen, Emil D.</creatorcontrib><description>Biosensors are valuable tools in accelerating the test phase of the design‐build‐test‐learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein‐coupled receptor (GPCR)‐based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR‐based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water‐in‐oil‐in‐water double emulsion droplets, combined with analysis and sorting via a fluorescence‐activated cell sorting machine. Employing tryptamine and serotonin as proof‐of‐concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin‐producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
Construction of self‐sensing yeast equipped with a G protein‐coupled receptor‐based biosensor module and a bioproduction module facilitates a streamlined screening strategy to identify high‐producing variants. We demonstrate this approach in three formats by which to link genotype with extracellular production phenotype: (1) microtiter plates, (2) colony screening, and (3) encapsulation in double emulsion microdroplets combined with fluorescence‐activated cell sorting.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28797</identifier><identifier>PMID: 38973176</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Autocrine Communication ; Autocrine signalling ; Biosensing Techniques - methods ; biosensor ; Biosensors ; Double emulsions ; droplet microfluidics ; Environmental conditions ; G protein-coupled receptors ; Genotypes ; G‐protein‐coupled receptor ; High-Throughput Screening Assays - methods ; high‐throughput screening ; Metabolites ; Microfluidics ; Plant layout ; Protein arrays ; Proteins ; Receptors ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Saccharomyces cerevisiae - metabolism ; Screening ; Serotonin ; Serotonin - analysis ; Serotonin - metabolism ; Tryptamine ; Tryptamines ; Workflow ; yeast ; Yeasts</subject><ispartof>Biotechnology and bioengineering, 2024-10, Vol.121 (10), p.3283-3296</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC.</rights><rights>2024 The Author(s). Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2787-54542af6e62363a56a4a8e454764aeec65db4cc23aff38c2e4dbbcd2fd665d263</cites><orcidid>0000-0001-8456-7781 ; 0000-0003-0635-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.28797$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.28797$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38973176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleski, Tatyana E.</creatorcontrib><creatorcontrib>Peng, Huadong</creatorcontrib><creatorcontrib>Lengger, Bettina</creatorcontrib><creatorcontrib>Wang, Jinglin</creatorcontrib><creatorcontrib>Jensen, Michael Krogh</creatorcontrib><creatorcontrib>Jensen, Emil D.</creatorcontrib><title>High‐throughput G protein‐coupled receptor‐based autocrine screening for secondary metabolite production in yeast</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Biosensors are valuable tools in accelerating the test phase of the design‐build‐test‐learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein‐coupled receptor (GPCR)‐based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR‐based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water‐in‐oil‐in‐water double emulsion droplets, combined with analysis and sorting via a fluorescence‐activated cell sorting machine. Employing tryptamine and serotonin as proof‐of‐concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin‐producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
Construction of self‐sensing yeast equipped with a G protein‐coupled receptor‐based biosensor module and a bioproduction module facilitates a streamlined screening strategy to identify high‐producing variants. We demonstrate this approach in three formats by which to link genotype with extracellular production phenotype: (1) microtiter plates, (2) colony screening, and (3) encapsulation in double emulsion microdroplets combined with fluorescence‐activated cell sorting.</description><subject>Autocrine Communication</subject><subject>Autocrine signalling</subject><subject>Biosensing Techniques - methods</subject><subject>biosensor</subject><subject>Biosensors</subject><subject>Double emulsions</subject><subject>droplet microfluidics</subject><subject>Environmental conditions</subject><subject>G protein-coupled receptors</subject><subject>Genotypes</subject><subject>G‐protein‐coupled receptor</subject><subject>High-Throughput Screening Assays - methods</subject><subject>high‐throughput screening</subject><subject>Metabolites</subject><subject>Microfluidics</subject><subject>Plant layout</subject><subject>Protein arrays</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Screening</subject><subject>Serotonin</subject><subject>Serotonin - analysis</subject><subject>Serotonin - metabolism</subject><subject>Tryptamine</subject><subject>Tryptamines</subject><subject>Workflow</subject><subject>yeast</subject><subject>Yeasts</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctK7TAUhoMc0e1l4AtI4Ex0UE2TNmmHHvEGghMdhzRd3TvSndRckD07j-Az-iRGtzoQHIX86-NjJT9CByU5KQmhp52JJ7QRrdhAs5K0oiC0JX_QjBDCC1a3dBvthPCYr6LhfAtts6YVrBR8hp6vzXzx-v8lLrxL88WUIr7Ck3cRjM2xdmkaocceNEzR-Rx1KuRApei0NxZw0B7AGjvHg_M4gHa2V36FlxBV50YT4d3XJx2Ns9hYvAIV4h7aHNQYYP_z3EUPlxf359fF7d3VzfnZbaGpaERRV3VF1cCBU8aZqrmqVAM5FLxSAJrXfVdpTZkaBtZoClXfdbqnQ8_ziHK2i47W3rzDU4IQ5dIEDeOoLLgUJCOCC86assro3x_oo0ve5u0kK_O8FYLXmTpeU9q7EDwMcvJmmR8sSyLf25C5DfnRRmYPP42pW0L_TX59fwZO18CzGWH1u0n-u7lfK98AQgCZeA</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Saleski, Tatyana E.</creator><creator>Peng, Huadong</creator><creator>Lengger, Bettina</creator><creator>Wang, Jinglin</creator><creator>Jensen, Michael Krogh</creator><creator>Jensen, Emil D.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8456-7781</orcidid><orcidid>https://orcid.org/0000-0003-0635-0493</orcidid></search><sort><creationdate>202410</creationdate><title>High‐throughput G protein‐coupled receptor‐based autocrine screening for secondary metabolite production in yeast</title><author>Saleski, Tatyana E. ; Peng, Huadong ; Lengger, Bettina ; Wang, Jinglin ; Jensen, Michael Krogh ; Jensen, Emil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2787-54542af6e62363a56a4a8e454764aeec65db4cc23aff38c2e4dbbcd2fd665d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autocrine Communication</topic><topic>Autocrine signalling</topic><topic>Biosensing Techniques - methods</topic><topic>biosensor</topic><topic>Biosensors</topic><topic>Double emulsions</topic><topic>droplet microfluidics</topic><topic>Environmental conditions</topic><topic>G protein-coupled receptors</topic><topic>Genotypes</topic><topic>G‐protein‐coupled receptor</topic><topic>High-Throughput Screening Assays - methods</topic><topic>high‐throughput screening</topic><topic>Metabolites</topic><topic>Microfluidics</topic><topic>Plant layout</topic><topic>Protein arrays</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Screening</topic><topic>Serotonin</topic><topic>Serotonin - analysis</topic><topic>Serotonin - metabolism</topic><topic>Tryptamine</topic><topic>Tryptamines</topic><topic>Workflow</topic><topic>yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleski, Tatyana E.</creatorcontrib><creatorcontrib>Peng, Huadong</creatorcontrib><creatorcontrib>Lengger, Bettina</creatorcontrib><creatorcontrib>Wang, Jinglin</creatorcontrib><creatorcontrib>Jensen, Michael Krogh</creatorcontrib><creatorcontrib>Jensen, Emil D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleski, Tatyana E.</au><au>Peng, Huadong</au><au>Lengger, Bettina</au><au>Wang, Jinglin</au><au>Jensen, Michael Krogh</au><au>Jensen, Emil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐throughput G protein‐coupled receptor‐based autocrine screening for secondary metabolite production in yeast</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2024-10</date><risdate>2024</risdate><volume>121</volume><issue>10</issue><spage>3283</spage><epage>3296</epage><pages>3283-3296</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><abstract>Biosensors are valuable tools in accelerating the test phase of the design‐build‐test‐learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein‐coupled receptor (GPCR)‐based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR‐based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water‐in‐oil‐in‐water double emulsion droplets, combined with analysis and sorting via a fluorescence‐activated cell sorting machine. Employing tryptamine and serotonin as proof‐of‐concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin‐producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
Construction of self‐sensing yeast equipped with a G protein‐coupled receptor‐based biosensor module and a bioproduction module facilitates a streamlined screening strategy to identify high‐producing variants. We demonstrate this approach in three formats by which to link genotype with extracellular production phenotype: (1) microtiter plates, (2) colony screening, and (3) encapsulation in double emulsion microdroplets combined with fluorescence‐activated cell sorting.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38973176</pmid><doi>10.1002/bit.28797</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8456-7781</orcidid><orcidid>https://orcid.org/0000-0003-0635-0493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2024-10, Vol.121 (10), p.3283-3296 |
issn | 0006-3592 1097-0290 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_3076763814 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Autocrine Communication Autocrine signalling Biosensing Techniques - methods biosensor Biosensors Double emulsions droplet microfluidics Environmental conditions G protein-coupled receptors Genotypes G‐protein‐coupled receptor High-Throughput Screening Assays - methods high‐throughput screening Metabolites Microfluidics Plant layout Protein arrays Proteins Receptors Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Saccharomyces cerevisiae - metabolism Screening Serotonin Serotonin - analysis Serotonin - metabolism Tryptamine Tryptamines Workflow yeast Yeasts |
title | High‐throughput G protein‐coupled receptor‐based autocrine screening for secondary metabolite production in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90throughput%20G%20protein%E2%80%90coupled%20receptor%E2%80%90based%20autocrine%20screening%20for%20secondary%20metabolite%20production%20in%20yeast&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Saleski,%20Tatyana%20E.&rft.date=2024-10&rft.volume=121&rft.issue=10&rft.spage=3283&rft.epage=3296&rft.pages=3283-3296&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28797&rft_dat=%3Cproquest_cross%3E3114397765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114397765&rft_id=info:pmid/38973176&rfr_iscdi=true |