Synthetic extremophiles via species-specific formulations improve microbial therapeutics
Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synth...
Gespeichert in:
Veröffentlicht in: | Nature materials 2024-10, Vol.23 (10), p.1436-1443 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1443 |
---|---|
container_issue | 10 |
container_start_page | 1436 |
container_title | Nature materials |
container_volume | 23 |
creator | Jimenez, Miguel L’Heureux, Johanna Kolaya, Emily Liu, Gary W. Martin, Kyle B. Ellis, Husna Dao, Alfred Yang, Margaret Villaverde, Zachary Khazi-Syed, Afeefah Cao, Qinhao Fabian, Niora Jenkins, Joshua Fitzgerald, Nina Karavasili, Christina Muller, Benjamin Byrne, James D. Traverso, Giovanni |
description | Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria (
Escherichia coli
Nissle 1917,
Ensifer meliloti
), gram-positive bacteria (
Lactobacillus plantarum
) and yeast (
Saccharomyces boulardii
). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of
E. coli
Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel.
A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows. |
doi_str_mv | 10.1038/s41563-024-01937-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076286275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076286275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-11aa4e73db29424c30ec44807cd5130200c25afbab93dc7efb61c516f0de88903</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbcm7VIGbzDgQgV3IU1PnQy9mbSD8_bG6ajgwtUJ5Dt__nwInRJ8STBLrzwniWAxpjzGJGMyFntoSrgUMRcC7-_OhFA6QUferzCmJEnEIZqwNBOZTOkUvT5tmn4JvTURfPQO6rZb2gp8tLY68h0YCz7ezjIgZevqodK9bRsf2bpz7Rqi2hrX5lZXUQhyuoMhpPljdFDqysPJbs7Qy-3N8_w-XjzePcyvF7GhiehDO605SFbkNOOUG4bBcJ5iaYqEMEwxDpwuc51nrDASylwQkxBR4gLSNMNshi7G3FDmfQDfq9p6A1WlG2gHrxiWgqaCyiSg53_QVTu4JrRTjBDCeEZTGig6UuFX3jsoVedsrd1GEay-vKvRuwre1da7EmHpbBc95DUUPyvfogPARsCHq-YN3O_b_8R-Au21jys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111349282</pqid></control><display><type>article</type><title>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jimenez, Miguel ; L’Heureux, Johanna ; Kolaya, Emily ; Liu, Gary W. ; Martin, Kyle B. ; Ellis, Husna ; Dao, Alfred ; Yang, Margaret ; Villaverde, Zachary ; Khazi-Syed, Afeefah ; Cao, Qinhao ; Fabian, Niora ; Jenkins, Joshua ; Fitzgerald, Nina ; Karavasili, Christina ; Muller, Benjamin ; Byrne, James D. ; Traverso, Giovanni</creator><creatorcontrib>Jimenez, Miguel ; L’Heureux, Johanna ; Kolaya, Emily ; Liu, Gary W. ; Martin, Kyle B. ; Ellis, Husna ; Dao, Alfred ; Yang, Margaret ; Villaverde, Zachary ; Khazi-Syed, Afeefah ; Cao, Qinhao ; Fabian, Niora ; Jenkins, Joshua ; Fitzgerald, Nina ; Karavasili, Christina ; Muller, Benjamin ; Byrne, James D. ; Traverso, Giovanni</creatorcontrib><description>Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria (
Escherichia coli
Nissle 1917,
Ensifer meliloti
), gram-positive bacteria (
Lactobacillus plantarum
) and yeast (
Saccharomyces boulardii
). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of
E. coli
Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel.
A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.</description><identifier>ISSN: 1476-1122</identifier><identifier>ISSN: 1476-4660</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-024-01937-6</identifier><identifier>PMID: 38969782</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/433 ; 631/61/2296 ; 631/61/252 ; 639/301/54/152 ; 639/301/54/2295 ; Animals ; Bacteria ; Biomaterials ; Chemistry and Materials Science ; Coliforms ; Condensed Matter Physics ; E coli ; Escherichia coli - drug effects ; Extreme environments ; Extremophiles - metabolism ; Gram-positive bacteria ; High temperature ; Ionizing radiation ; Manufacturing ; Materials Science ; Microorganisms ; Nanotechnology ; Nitrogen fixation ; Nitrogenation ; Optical and Electronic Materials ; Organic solvents ; Pharmaceuticals ; Plant layout ; Space flight ; Species Specificity ; Yeasts</subject><ispartof>Nature materials, 2024-10, Vol.23 (10), p.1436-1443</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-11aa4e73db29424c30ec44807cd5130200c25afbab93dc7efb61c516f0de88903</cites><orcidid>0009-0009-0121-1209 ; 0000-0001-5948-8934 ; 0000-0003-4211-1852 ; 0000-0001-7851-4077 ; 0000-0002-0261-196X ; 0000-0002-0799-965X ; 0000-0002-8648-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38969782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez, Miguel</creatorcontrib><creatorcontrib>L’Heureux, Johanna</creatorcontrib><creatorcontrib>Kolaya, Emily</creatorcontrib><creatorcontrib>Liu, Gary W.</creatorcontrib><creatorcontrib>Martin, Kyle B.</creatorcontrib><creatorcontrib>Ellis, Husna</creatorcontrib><creatorcontrib>Dao, Alfred</creatorcontrib><creatorcontrib>Yang, Margaret</creatorcontrib><creatorcontrib>Villaverde, Zachary</creatorcontrib><creatorcontrib>Khazi-Syed, Afeefah</creatorcontrib><creatorcontrib>Cao, Qinhao</creatorcontrib><creatorcontrib>Fabian, Niora</creatorcontrib><creatorcontrib>Jenkins, Joshua</creatorcontrib><creatorcontrib>Fitzgerald, Nina</creatorcontrib><creatorcontrib>Karavasili, Christina</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Byrne, James D.</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><title>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria (
Escherichia coli
Nissle 1917,
Ensifer meliloti
), gram-positive bacteria (
Lactobacillus plantarum
) and yeast (
Saccharomyces boulardii
). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of
E. coli
Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel.
A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.</description><subject>631/154/433</subject><subject>631/61/2296</subject><subject>631/61/252</subject><subject>639/301/54/152</subject><subject>639/301/54/2295</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coliforms</subject><subject>Condensed Matter Physics</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>Extreme environments</subject><subject>Extremophiles - metabolism</subject><subject>Gram-positive bacteria</subject><subject>High temperature</subject><subject>Ionizing radiation</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Optical and Electronic Materials</subject><subject>Organic solvents</subject><subject>Pharmaceuticals</subject><subject>Plant layout</subject><subject>Space flight</subject><subject>Species Specificity</subject><subject>Yeasts</subject><issn>1476-1122</issn><issn>1476-4660</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbcm7VIGbzDgQgV3IU1PnQy9mbSD8_bG6ajgwtUJ5Dt__nwInRJ8STBLrzwniWAxpjzGJGMyFntoSrgUMRcC7-_OhFA6QUferzCmJEnEIZqwNBOZTOkUvT5tmn4JvTURfPQO6rZb2gp8tLY68h0YCz7ezjIgZevqodK9bRsf2bpz7Rqi2hrX5lZXUQhyuoMhpPljdFDqysPJbs7Qy-3N8_w-XjzePcyvF7GhiehDO605SFbkNOOUG4bBcJ5iaYqEMEwxDpwuc51nrDASylwQkxBR4gLSNMNshi7G3FDmfQDfq9p6A1WlG2gHrxiWgqaCyiSg53_QVTu4JrRTjBDCeEZTGig6UuFX3jsoVedsrd1GEay-vKvRuwre1da7EmHpbBc95DUUPyvfogPARsCHq-YN3O_b_8R-Au21jys</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Jimenez, Miguel</creator><creator>L’Heureux, Johanna</creator><creator>Kolaya, Emily</creator><creator>Liu, Gary W.</creator><creator>Martin, Kyle B.</creator><creator>Ellis, Husna</creator><creator>Dao, Alfred</creator><creator>Yang, Margaret</creator><creator>Villaverde, Zachary</creator><creator>Khazi-Syed, Afeefah</creator><creator>Cao, Qinhao</creator><creator>Fabian, Niora</creator><creator>Jenkins, Joshua</creator><creator>Fitzgerald, Nina</creator><creator>Karavasili, Christina</creator><creator>Muller, Benjamin</creator><creator>Byrne, James D.</creator><creator>Traverso, Giovanni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-0121-1209</orcidid><orcidid>https://orcid.org/0000-0001-5948-8934</orcidid><orcidid>https://orcid.org/0000-0003-4211-1852</orcidid><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-0261-196X</orcidid><orcidid>https://orcid.org/0000-0002-0799-965X</orcidid><orcidid>https://orcid.org/0000-0002-8648-1444</orcidid></search><sort><creationdate>20241001</creationdate><title>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</title><author>Jimenez, Miguel ; L’Heureux, Johanna ; Kolaya, Emily ; Liu, Gary W. ; Martin, Kyle B. ; Ellis, Husna ; Dao, Alfred ; Yang, Margaret ; Villaverde, Zachary ; Khazi-Syed, Afeefah ; Cao, Qinhao ; Fabian, Niora ; Jenkins, Joshua ; Fitzgerald, Nina ; Karavasili, Christina ; Muller, Benjamin ; Byrne, James D. ; Traverso, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-11aa4e73db29424c30ec44807cd5130200c25afbab93dc7efb61c516f0de88903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154/433</topic><topic>631/61/2296</topic><topic>631/61/252</topic><topic>639/301/54/152</topic><topic>639/301/54/2295</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coliforms</topic><topic>Condensed Matter Physics</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>Extreme environments</topic><topic>Extremophiles - metabolism</topic><topic>Gram-positive bacteria</topic><topic>High temperature</topic><topic>Ionizing radiation</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Optical and Electronic Materials</topic><topic>Organic solvents</topic><topic>Pharmaceuticals</topic><topic>Plant layout</topic><topic>Space flight</topic><topic>Species Specificity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez, Miguel</creatorcontrib><creatorcontrib>L’Heureux, Johanna</creatorcontrib><creatorcontrib>Kolaya, Emily</creatorcontrib><creatorcontrib>Liu, Gary W.</creatorcontrib><creatorcontrib>Martin, Kyle B.</creatorcontrib><creatorcontrib>Ellis, Husna</creatorcontrib><creatorcontrib>Dao, Alfred</creatorcontrib><creatorcontrib>Yang, Margaret</creatorcontrib><creatorcontrib>Villaverde, Zachary</creatorcontrib><creatorcontrib>Khazi-Syed, Afeefah</creatorcontrib><creatorcontrib>Cao, Qinhao</creatorcontrib><creatorcontrib>Fabian, Niora</creatorcontrib><creatorcontrib>Jenkins, Joshua</creatorcontrib><creatorcontrib>Fitzgerald, Nina</creatorcontrib><creatorcontrib>Karavasili, Christina</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Byrne, James D.</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez, Miguel</au><au>L’Heureux, Johanna</au><au>Kolaya, Emily</au><au>Liu, Gary W.</au><au>Martin, Kyle B.</au><au>Ellis, Husna</au><au>Dao, Alfred</au><au>Yang, Margaret</au><au>Villaverde, Zachary</au><au>Khazi-Syed, Afeefah</au><au>Cao, Qinhao</au><au>Fabian, Niora</au><au>Jenkins, Joshua</au><au>Fitzgerald, Nina</au><au>Karavasili, Christina</au><au>Muller, Benjamin</au><au>Byrne, James D.</au><au>Traverso, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>1436</spage><epage>1443</epage><pages>1436-1443</pages><issn>1476-1122</issn><issn>1476-4660</issn><eissn>1476-4660</eissn><abstract>Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria (
Escherichia coli
Nissle 1917,
Ensifer meliloti
), gram-positive bacteria (
Lactobacillus plantarum
) and yeast (
Saccharomyces boulardii
). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of
E. coli
Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel.
A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38969782</pmid><doi>10.1038/s41563-024-01937-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0009-0121-1209</orcidid><orcidid>https://orcid.org/0000-0001-5948-8934</orcidid><orcidid>https://orcid.org/0000-0003-4211-1852</orcidid><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-0261-196X</orcidid><orcidid>https://orcid.org/0000-0002-0799-965X</orcidid><orcidid>https://orcid.org/0000-0002-8648-1444</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2024-10, Vol.23 (10), p.1436-1443 |
issn | 1476-1122 1476-4660 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_3076286275 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/154/433 631/61/2296 631/61/252 639/301/54/152 639/301/54/2295 Animals Bacteria Biomaterials Chemistry and Materials Science Coliforms Condensed Matter Physics E coli Escherichia coli - drug effects Extreme environments Extremophiles - metabolism Gram-positive bacteria High temperature Ionizing radiation Manufacturing Materials Science Microorganisms Nanotechnology Nitrogen fixation Nitrogenation Optical and Electronic Materials Organic solvents Pharmaceuticals Plant layout Space flight Species Specificity Yeasts |
title | Synthetic extremophiles via species-specific formulations improve microbial therapeutics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20extremophiles%20via%20species-specific%20formulations%20improve%20microbial%20therapeutics&rft.jtitle=Nature%20materials&rft.au=Jimenez,%20Miguel&rft.date=2024-10-01&rft.volume=23&rft.issue=10&rft.spage=1436&rft.epage=1443&rft.pages=1436-1443&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-024-01937-6&rft_dat=%3Cproquest_cross%3E3076286275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111349282&rft_id=info:pmid/38969782&rfr_iscdi=true |