Synthetic extremophiles via species-specific formulations improve microbial therapeutics

Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2024-10, Vol.23 (10), p.1436-1443
Hauptverfasser: Jimenez, Miguel, L’Heureux, Johanna, Kolaya, Emily, Liu, Gary W., Martin, Kyle B., Ellis, Husna, Dao, Alfred, Yang, Margaret, Villaverde, Zachary, Khazi-Syed, Afeefah, Cao, Qinhao, Fabian, Niora, Jenkins, Joshua, Fitzgerald, Nina, Karavasili, Christina, Muller, Benjamin, Byrne, James D., Traverso, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1443
container_issue 10
container_start_page 1436
container_title Nature materials
container_volume 23
creator Jimenez, Miguel
L’Heureux, Johanna
Kolaya, Emily
Liu, Gary W.
Martin, Kyle B.
Ellis, Husna
Dao, Alfred
Yang, Margaret
Villaverde, Zachary
Khazi-Syed, Afeefah
Cao, Qinhao
Fabian, Niora
Jenkins, Joshua
Fitzgerald, Nina
Karavasili, Christina
Muller, Benjamin
Byrne, James D.
Traverso, Giovanni
description Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria ( Escherichia coli Nissle 1917, Ensifer meliloti ), gram-positive bacteria ( Lactobacillus plantarum ) and yeast ( Saccharomyces boulardii ). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of E. coli Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel. A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.
doi_str_mv 10.1038/s41563-024-01937-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076286275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076286275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-11aa4e73db29424c30ec44807cd5130200c25afbab93dc7efb61c516f0de88903</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbcm7VIGbzDgQgV3IU1PnQy9mbSD8_bG6ajgwtUJ5Dt__nwInRJ8STBLrzwniWAxpjzGJGMyFntoSrgUMRcC7-_OhFA6QUferzCmJEnEIZqwNBOZTOkUvT5tmn4JvTURfPQO6rZb2gp8tLY68h0YCz7ezjIgZevqodK9bRsf2bpz7Rqi2hrX5lZXUQhyuoMhpPljdFDqysPJbs7Qy-3N8_w-XjzePcyvF7GhiehDO605SFbkNOOUG4bBcJ5iaYqEMEwxDpwuc51nrDASylwQkxBR4gLSNMNshi7G3FDmfQDfq9p6A1WlG2gHrxiWgqaCyiSg53_QVTu4JrRTjBDCeEZTGig6UuFX3jsoVedsrd1GEay-vKvRuwre1da7EmHpbBc95DUUPyvfogPARsCHq-YN3O_b_8R-Au21jys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111349282</pqid></control><display><type>article</type><title>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jimenez, Miguel ; L’Heureux, Johanna ; Kolaya, Emily ; Liu, Gary W. ; Martin, Kyle B. ; Ellis, Husna ; Dao, Alfred ; Yang, Margaret ; Villaverde, Zachary ; Khazi-Syed, Afeefah ; Cao, Qinhao ; Fabian, Niora ; Jenkins, Joshua ; Fitzgerald, Nina ; Karavasili, Christina ; Muller, Benjamin ; Byrne, James D. ; Traverso, Giovanni</creator><creatorcontrib>Jimenez, Miguel ; L’Heureux, Johanna ; Kolaya, Emily ; Liu, Gary W. ; Martin, Kyle B. ; Ellis, Husna ; Dao, Alfred ; Yang, Margaret ; Villaverde, Zachary ; Khazi-Syed, Afeefah ; Cao, Qinhao ; Fabian, Niora ; Jenkins, Joshua ; Fitzgerald, Nina ; Karavasili, Christina ; Muller, Benjamin ; Byrne, James D. ; Traverso, Giovanni</creatorcontrib><description>Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria ( Escherichia coli Nissle 1917, Ensifer meliloti ), gram-positive bacteria ( Lactobacillus plantarum ) and yeast ( Saccharomyces boulardii ). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of E. coli Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel. A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.</description><identifier>ISSN: 1476-1122</identifier><identifier>ISSN: 1476-4660</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-024-01937-6</identifier><identifier>PMID: 38969782</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/433 ; 631/61/2296 ; 631/61/252 ; 639/301/54/152 ; 639/301/54/2295 ; Animals ; Bacteria ; Biomaterials ; Chemistry and Materials Science ; Coliforms ; Condensed Matter Physics ; E coli ; Escherichia coli - drug effects ; Extreme environments ; Extremophiles - metabolism ; Gram-positive bacteria ; High temperature ; Ionizing radiation ; Manufacturing ; Materials Science ; Microorganisms ; Nanotechnology ; Nitrogen fixation ; Nitrogenation ; Optical and Electronic Materials ; Organic solvents ; Pharmaceuticals ; Plant layout ; Space flight ; Species Specificity ; Yeasts</subject><ispartof>Nature materials, 2024-10, Vol.23 (10), p.1436-1443</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-11aa4e73db29424c30ec44807cd5130200c25afbab93dc7efb61c516f0de88903</cites><orcidid>0009-0009-0121-1209 ; 0000-0001-5948-8934 ; 0000-0003-4211-1852 ; 0000-0001-7851-4077 ; 0000-0002-0261-196X ; 0000-0002-0799-965X ; 0000-0002-8648-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38969782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez, Miguel</creatorcontrib><creatorcontrib>L’Heureux, Johanna</creatorcontrib><creatorcontrib>Kolaya, Emily</creatorcontrib><creatorcontrib>Liu, Gary W.</creatorcontrib><creatorcontrib>Martin, Kyle B.</creatorcontrib><creatorcontrib>Ellis, Husna</creatorcontrib><creatorcontrib>Dao, Alfred</creatorcontrib><creatorcontrib>Yang, Margaret</creatorcontrib><creatorcontrib>Villaverde, Zachary</creatorcontrib><creatorcontrib>Khazi-Syed, Afeefah</creatorcontrib><creatorcontrib>Cao, Qinhao</creatorcontrib><creatorcontrib>Fabian, Niora</creatorcontrib><creatorcontrib>Jenkins, Joshua</creatorcontrib><creatorcontrib>Fitzgerald, Nina</creatorcontrib><creatorcontrib>Karavasili, Christina</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Byrne, James D.</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><title>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria ( Escherichia coli Nissle 1917, Ensifer meliloti ), gram-positive bacteria ( Lactobacillus plantarum ) and yeast ( Saccharomyces boulardii ). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of E. coli Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel. A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.</description><subject>631/154/433</subject><subject>631/61/2296</subject><subject>631/61/252</subject><subject>639/301/54/152</subject><subject>639/301/54/2295</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coliforms</subject><subject>Condensed Matter Physics</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>Extreme environments</subject><subject>Extremophiles - metabolism</subject><subject>Gram-positive bacteria</subject><subject>High temperature</subject><subject>Ionizing radiation</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Optical and Electronic Materials</subject><subject>Organic solvents</subject><subject>Pharmaceuticals</subject><subject>Plant layout</subject><subject>Space flight</subject><subject>Species Specificity</subject><subject>Yeasts</subject><issn>1476-1122</issn><issn>1476-4660</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbcm7VIGbzDgQgV3IU1PnQy9mbSD8_bG6ajgwtUJ5Dt__nwInRJ8STBLrzwniWAxpjzGJGMyFntoSrgUMRcC7-_OhFA6QUferzCmJEnEIZqwNBOZTOkUvT5tmn4JvTURfPQO6rZb2gp8tLY68h0YCz7ezjIgZevqodK9bRsf2bpz7Rqi2hrX5lZXUQhyuoMhpPljdFDqysPJbs7Qy-3N8_w-XjzePcyvF7GhiehDO605SFbkNOOUG4bBcJ5iaYqEMEwxDpwuc51nrDASylwQkxBR4gLSNMNshi7G3FDmfQDfq9p6A1WlG2gHrxiWgqaCyiSg53_QVTu4JrRTjBDCeEZTGig6UuFX3jsoVedsrd1GEay-vKvRuwre1da7EmHpbBc95DUUPyvfogPARsCHq-YN3O_b_8R-Au21jys</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Jimenez, Miguel</creator><creator>L’Heureux, Johanna</creator><creator>Kolaya, Emily</creator><creator>Liu, Gary W.</creator><creator>Martin, Kyle B.</creator><creator>Ellis, Husna</creator><creator>Dao, Alfred</creator><creator>Yang, Margaret</creator><creator>Villaverde, Zachary</creator><creator>Khazi-Syed, Afeefah</creator><creator>Cao, Qinhao</creator><creator>Fabian, Niora</creator><creator>Jenkins, Joshua</creator><creator>Fitzgerald, Nina</creator><creator>Karavasili, Christina</creator><creator>Muller, Benjamin</creator><creator>Byrne, James D.</creator><creator>Traverso, Giovanni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-0121-1209</orcidid><orcidid>https://orcid.org/0000-0001-5948-8934</orcidid><orcidid>https://orcid.org/0000-0003-4211-1852</orcidid><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-0261-196X</orcidid><orcidid>https://orcid.org/0000-0002-0799-965X</orcidid><orcidid>https://orcid.org/0000-0002-8648-1444</orcidid></search><sort><creationdate>20241001</creationdate><title>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</title><author>Jimenez, Miguel ; L’Heureux, Johanna ; Kolaya, Emily ; Liu, Gary W. ; Martin, Kyle B. ; Ellis, Husna ; Dao, Alfred ; Yang, Margaret ; Villaverde, Zachary ; Khazi-Syed, Afeefah ; Cao, Qinhao ; Fabian, Niora ; Jenkins, Joshua ; Fitzgerald, Nina ; Karavasili, Christina ; Muller, Benjamin ; Byrne, James D. ; Traverso, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-11aa4e73db29424c30ec44807cd5130200c25afbab93dc7efb61c516f0de88903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154/433</topic><topic>631/61/2296</topic><topic>631/61/252</topic><topic>639/301/54/152</topic><topic>639/301/54/2295</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coliforms</topic><topic>Condensed Matter Physics</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>Extreme environments</topic><topic>Extremophiles - metabolism</topic><topic>Gram-positive bacteria</topic><topic>High temperature</topic><topic>Ionizing radiation</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Optical and Electronic Materials</topic><topic>Organic solvents</topic><topic>Pharmaceuticals</topic><topic>Plant layout</topic><topic>Space flight</topic><topic>Species Specificity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez, Miguel</creatorcontrib><creatorcontrib>L’Heureux, Johanna</creatorcontrib><creatorcontrib>Kolaya, Emily</creatorcontrib><creatorcontrib>Liu, Gary W.</creatorcontrib><creatorcontrib>Martin, Kyle B.</creatorcontrib><creatorcontrib>Ellis, Husna</creatorcontrib><creatorcontrib>Dao, Alfred</creatorcontrib><creatorcontrib>Yang, Margaret</creatorcontrib><creatorcontrib>Villaverde, Zachary</creatorcontrib><creatorcontrib>Khazi-Syed, Afeefah</creatorcontrib><creatorcontrib>Cao, Qinhao</creatorcontrib><creatorcontrib>Fabian, Niora</creatorcontrib><creatorcontrib>Jenkins, Joshua</creatorcontrib><creatorcontrib>Fitzgerald, Nina</creatorcontrib><creatorcontrib>Karavasili, Christina</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Byrne, James D.</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez, Miguel</au><au>L’Heureux, Johanna</au><au>Kolaya, Emily</au><au>Liu, Gary W.</au><au>Martin, Kyle B.</au><au>Ellis, Husna</au><au>Dao, Alfred</au><au>Yang, Margaret</au><au>Villaverde, Zachary</au><au>Khazi-Syed, Afeefah</au><au>Cao, Qinhao</au><au>Fabian, Niora</au><au>Jenkins, Joshua</au><au>Fitzgerald, Nina</au><au>Karavasili, Christina</au><au>Muller, Benjamin</au><au>Byrne, James D.</au><au>Traverso, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic extremophiles via species-specific formulations improve microbial therapeutics</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>1436</spage><epage>1443</epage><pages>1436-1443</pages><issn>1476-1122</issn><issn>1476-4660</issn><eissn>1476-4660</eissn><abstract>Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria ( Escherichia coli Nissle 1917, Ensifer meliloti ), gram-positive bacteria ( Lactobacillus plantarum ) and yeast ( Saccharomyces boulardii ). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of E. coli Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel. A high-throughput screen of substances generally recognized as safe identifies species-specific materials that stabilize live microbial therapeutics as powders, making them robust to pharmaceutical manufacturing workflows.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38969782</pmid><doi>10.1038/s41563-024-01937-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0009-0121-1209</orcidid><orcidid>https://orcid.org/0000-0001-5948-8934</orcidid><orcidid>https://orcid.org/0000-0003-4211-1852</orcidid><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-0261-196X</orcidid><orcidid>https://orcid.org/0000-0002-0799-965X</orcidid><orcidid>https://orcid.org/0000-0002-8648-1444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2024-10, Vol.23 (10), p.1436-1443
issn 1476-1122
1476-4660
1476-4660
language eng
recordid cdi_proquest_miscellaneous_3076286275
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/154/433
631/61/2296
631/61/252
639/301/54/152
639/301/54/2295
Animals
Bacteria
Biomaterials
Chemistry and Materials Science
Coliforms
Condensed Matter Physics
E coli
Escherichia coli - drug effects
Extreme environments
Extremophiles - metabolism
Gram-positive bacteria
High temperature
Ionizing radiation
Manufacturing
Materials Science
Microorganisms
Nanotechnology
Nitrogen fixation
Nitrogenation
Optical and Electronic Materials
Organic solvents
Pharmaceuticals
Plant layout
Space flight
Species Specificity
Yeasts
title Synthetic extremophiles via species-specific formulations improve microbial therapeutics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20extremophiles%20via%20species-specific%20formulations%20improve%20microbial%20therapeutics&rft.jtitle=Nature%20materials&rft.au=Jimenez,%20Miguel&rft.date=2024-10-01&rft.volume=23&rft.issue=10&rft.spage=1436&rft.epage=1443&rft.pages=1436-1443&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-024-01937-6&rft_dat=%3Cproquest_cross%3E3076286275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111349282&rft_id=info:pmid/38969782&rfr_iscdi=true