Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1

Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2024-07, Vol.21 (2), p.227-237
Hauptverfasser: Lee, Kwangwoon, Barone, Marco, Waterbury, Amanda L., Jiang, Hanjie, Nam, Eunju, DuBois-Coyne, Sarah E., Whedon, Samuel D., Wang, Zhipeng A., Caroli, Jonatan, Neal, Katherine, Ibeabuchi, Brian, Dhoondia, Zuzer, Kuroda, Mitzi I., Liau, Brian B., Beck, Samuel, Mattevi, Andrea, Cole, Philip A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 227
container_title Nature chemical biology
container_volume 21
creator Lee, Kwangwoon
Barone, Marco
Waterbury, Amanda L.
Jiang, Hanjie
Nam, Eunju
DuBois-Coyne, Sarah E.
Whedon, Samuel D.
Wang, Zhipeng A.
Caroli, Jonatan
Neal, Katherine
Ibeabuchi, Brian
Dhoondia, Zuzer
Kuroda, Mitzi I.
Liau, Brian B.
Beck, Samuel
Mattevi, Andrea
Cole, Philip A.
description Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis -regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme. Lee, Barone et al. engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation of histone H3, providing a useful tool to illuminate the functional consequences of disconnecting histone modification crosstalk.
doi_str_mv 10.1038/s41589-024-01671-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076018896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3161614337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-330e3e12ff6bc1ea79bdddc669b4706ac53584633b1cd846d86cf537b217c6283</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwAgwoEgtLwM6NHWdE_EuVQILOVuLctCmJE-JkyNvjNqVIDMiDv-Hcz76HkHNGrxkFeWNDxmXs0yD0KRMR8-MDMmWcB34YivhwnzmdkBNr15SCEEwekwnIWHCQfEreFkbXfVMWZumtCtvVBr2qzoq80ElX1MbTbW1tl5SfXjp4aJaFQWw3dDlYl70MK-xWQ5lY9Obv9-yUHOVJafFsd8_I4vHh4-7Zn78-vdzdzn0Ngeh8AIqALMhzkWqGSRSnWZZpIeI0jKhINAcuQwGQMp25kEmhcw5RGrBIi0DCjFyNvU1bf_VoO1UVVmNZJgbr3iqgkaBMukUdevkHXdd9a9zvFDDhTggQOSoYqe3GLeaqaYsqaQfFqNr4VqNv5XyrrW8Vu6GLXXWfVpjtR34EOwBGwDYba9j-vv1P7TdHIosO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3161614337</pqid></control><display><type>article</type><title>Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lee, Kwangwoon ; Barone, Marco ; Waterbury, Amanda L. ; Jiang, Hanjie ; Nam, Eunju ; DuBois-Coyne, Sarah E. ; Whedon, Samuel D. ; Wang, Zhipeng A. ; Caroli, Jonatan ; Neal, Katherine ; Ibeabuchi, Brian ; Dhoondia, Zuzer ; Kuroda, Mitzi I. ; Liau, Brian B. ; Beck, Samuel ; Mattevi, Andrea ; Cole, Philip A.</creator><creatorcontrib>Lee, Kwangwoon ; Barone, Marco ; Waterbury, Amanda L. ; Jiang, Hanjie ; Nam, Eunju ; DuBois-Coyne, Sarah E. ; Whedon, Samuel D. ; Wang, Zhipeng A. ; Caroli, Jonatan ; Neal, Katherine ; Ibeabuchi, Brian ; Dhoondia, Zuzer ; Kuroda, Mitzi I. ; Liau, Brian B. ; Beck, Samuel ; Mattevi, Andrea ; Cole, Philip A.</creatorcontrib><description>Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis -regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme. Lee, Barone et al. engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation of histone H3, providing a useful tool to illuminate the functional consequences of disconnecting histone modification crosstalk.</description><identifier>ISSN: 1552-4450</identifier><identifier>ISSN: 1552-4469</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-024-01671-9</identifier><identifier>PMID: 38965385</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/612/100/2285 ; 631/92/607 ; Acetylation ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell activation ; Cell adhesion ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chromatin ; CRISPR ; Demethylation ; Enzymes ; Epigenesis, Genetic ; Epigenetics ; Gene silencing ; Genes ; Histone Demethylases - genetics ; Histone Demethylases - metabolism ; Histone H3 ; Histones ; Histones - genetics ; Histones - metabolism ; Humans ; K562 Cells ; Lysine ; Lysine - metabolism ; Mutants ; Protein Engineering ; Regulatory sequences ; Transcription activation</subject><ispartof>Nature chemical biology, 2024-07, Vol.21 (2), p.227-237</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>Copyright Nature Publishing Group Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-330e3e12ff6bc1ea79bdddc669b4706ac53584633b1cd846d86cf537b217c6283</cites><orcidid>0000-0002-9523-7128 ; 0000-0003-0801-9331 ; 0000-0003-0840-3608 ; 0000-0001-7184-2940 ; 0000-0002-0390-8140 ; 0000-0002-3745-5645 ; 0000-0001-6090-4552 ; 0000-0002-2021-5186 ; 0000-0003-4171-1944 ; 0000-0002-0184-8367 ; 0000-0002-5693-7359 ; 0000-0002-4473-2866 ; 0000-0001-6873-7824 ; 0000-0002-2985-462X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-024-01671-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-024-01671-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38965385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kwangwoon</creatorcontrib><creatorcontrib>Barone, Marco</creatorcontrib><creatorcontrib>Waterbury, Amanda L.</creatorcontrib><creatorcontrib>Jiang, Hanjie</creatorcontrib><creatorcontrib>Nam, Eunju</creatorcontrib><creatorcontrib>DuBois-Coyne, Sarah E.</creatorcontrib><creatorcontrib>Whedon, Samuel D.</creatorcontrib><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Caroli, Jonatan</creatorcontrib><creatorcontrib>Neal, Katherine</creatorcontrib><creatorcontrib>Ibeabuchi, Brian</creatorcontrib><creatorcontrib>Dhoondia, Zuzer</creatorcontrib><creatorcontrib>Kuroda, Mitzi I.</creatorcontrib><creatorcontrib>Liau, Brian B.</creatorcontrib><creatorcontrib>Beck, Samuel</creatorcontrib><creatorcontrib>Mattevi, Andrea</creatorcontrib><creatorcontrib>Cole, Philip A.</creatorcontrib><title>Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis -regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme. Lee, Barone et al. engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation of histone H3, providing a useful tool to illuminate the functional consequences of disconnecting histone modification crosstalk.</description><subject>631/45/612/100/2285</subject><subject>631/92/607</subject><subject>Acetylation</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell activation</subject><subject>Cell adhesion</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chromatin</subject><subject>CRISPR</subject><subject>Demethylation</subject><subject>Enzymes</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Histone Demethylases - genetics</subject><subject>Histone Demethylases - metabolism</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Mutants</subject><subject>Protein Engineering</subject><subject>Regulatory sequences</subject><subject>Transcription activation</subject><issn>1552-4450</issn><issn>1552-4469</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL1OwzAURi0EoqXwAgwoEgtLwM6NHWdE_EuVQILOVuLctCmJE-JkyNvjNqVIDMiDv-Hcz76HkHNGrxkFeWNDxmXs0yD0KRMR8-MDMmWcB34YivhwnzmdkBNr15SCEEwekwnIWHCQfEreFkbXfVMWZumtCtvVBr2qzoq80ElX1MbTbW1tl5SfXjp4aJaFQWw3dDlYl70MK-xWQ5lY9Obv9-yUHOVJafFsd8_I4vHh4-7Zn78-vdzdzn0Ngeh8AIqALMhzkWqGSRSnWZZpIeI0jKhINAcuQwGQMp25kEmhcw5RGrBIi0DCjFyNvU1bf_VoO1UVVmNZJgbr3iqgkaBMukUdevkHXdd9a9zvFDDhTggQOSoYqe3GLeaqaYsqaQfFqNr4VqNv5XyrrW8Vu6GLXXWfVpjtR34EOwBGwDYba9j-vv1P7TdHIosO</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>Lee, Kwangwoon</creator><creator>Barone, Marco</creator><creator>Waterbury, Amanda L.</creator><creator>Jiang, Hanjie</creator><creator>Nam, Eunju</creator><creator>DuBois-Coyne, Sarah E.</creator><creator>Whedon, Samuel D.</creator><creator>Wang, Zhipeng A.</creator><creator>Caroli, Jonatan</creator><creator>Neal, Katherine</creator><creator>Ibeabuchi, Brian</creator><creator>Dhoondia, Zuzer</creator><creator>Kuroda, Mitzi I.</creator><creator>Liau, Brian B.</creator><creator>Beck, Samuel</creator><creator>Mattevi, Andrea</creator><creator>Cole, Philip A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9523-7128</orcidid><orcidid>https://orcid.org/0000-0003-0801-9331</orcidid><orcidid>https://orcid.org/0000-0003-0840-3608</orcidid><orcidid>https://orcid.org/0000-0001-7184-2940</orcidid><orcidid>https://orcid.org/0000-0002-0390-8140</orcidid><orcidid>https://orcid.org/0000-0002-3745-5645</orcidid><orcidid>https://orcid.org/0000-0001-6090-4552</orcidid><orcidid>https://orcid.org/0000-0002-2021-5186</orcidid><orcidid>https://orcid.org/0000-0003-4171-1944</orcidid><orcidid>https://orcid.org/0000-0002-0184-8367</orcidid><orcidid>https://orcid.org/0000-0002-5693-7359</orcidid><orcidid>https://orcid.org/0000-0002-4473-2866</orcidid><orcidid>https://orcid.org/0000-0001-6873-7824</orcidid><orcidid>https://orcid.org/0000-0002-2985-462X</orcidid></search><sort><creationdate>20240704</creationdate><title>Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1</title><author>Lee, Kwangwoon ; Barone, Marco ; Waterbury, Amanda L. ; Jiang, Hanjie ; Nam, Eunju ; DuBois-Coyne, Sarah E. ; Whedon, Samuel D. ; Wang, Zhipeng A. ; Caroli, Jonatan ; Neal, Katherine ; Ibeabuchi, Brian ; Dhoondia, Zuzer ; Kuroda, Mitzi I. ; Liau, Brian B. ; Beck, Samuel ; Mattevi, Andrea ; Cole, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-330e3e12ff6bc1ea79bdddc669b4706ac53584633b1cd846d86cf537b217c6283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/45/612/100/2285</topic><topic>631/92/607</topic><topic>Acetylation</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell activation</topic><topic>Cell adhesion</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chromatin</topic><topic>CRISPR</topic><topic>Demethylation</topic><topic>Enzymes</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Histone Demethylases - genetics</topic><topic>Histone Demethylases - metabolism</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Mutants</topic><topic>Protein Engineering</topic><topic>Regulatory sequences</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kwangwoon</creatorcontrib><creatorcontrib>Barone, Marco</creatorcontrib><creatorcontrib>Waterbury, Amanda L.</creatorcontrib><creatorcontrib>Jiang, Hanjie</creatorcontrib><creatorcontrib>Nam, Eunju</creatorcontrib><creatorcontrib>DuBois-Coyne, Sarah E.</creatorcontrib><creatorcontrib>Whedon, Samuel D.</creatorcontrib><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Caroli, Jonatan</creatorcontrib><creatorcontrib>Neal, Katherine</creatorcontrib><creatorcontrib>Ibeabuchi, Brian</creatorcontrib><creatorcontrib>Dhoondia, Zuzer</creatorcontrib><creatorcontrib>Kuroda, Mitzi I.</creatorcontrib><creatorcontrib>Liau, Brian B.</creatorcontrib><creatorcontrib>Beck, Samuel</creatorcontrib><creatorcontrib>Mattevi, Andrea</creatorcontrib><creatorcontrib>Cole, Philip A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kwangwoon</au><au>Barone, Marco</au><au>Waterbury, Amanda L.</au><au>Jiang, Hanjie</au><au>Nam, Eunju</au><au>DuBois-Coyne, Sarah E.</au><au>Whedon, Samuel D.</au><au>Wang, Zhipeng A.</au><au>Caroli, Jonatan</au><au>Neal, Katherine</au><au>Ibeabuchi, Brian</au><au>Dhoondia, Zuzer</au><au>Kuroda, Mitzi I.</au><au>Liau, Brian B.</au><au>Beck, Samuel</au><au>Mattevi, Andrea</au><au>Cole, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2024-07-04</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>227</spage><epage>237</epage><pages>227-237</pages><issn>1552-4450</issn><issn>1552-4469</issn><eissn>1552-4469</eissn><abstract>Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis -regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme. Lee, Barone et al. engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation of histone H3, providing a useful tool to illuminate the functional consequences of disconnecting histone modification crosstalk.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38965385</pmid><doi>10.1038/s41589-024-01671-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9523-7128</orcidid><orcidid>https://orcid.org/0000-0003-0801-9331</orcidid><orcidid>https://orcid.org/0000-0003-0840-3608</orcidid><orcidid>https://orcid.org/0000-0001-7184-2940</orcidid><orcidid>https://orcid.org/0000-0002-0390-8140</orcidid><orcidid>https://orcid.org/0000-0002-3745-5645</orcidid><orcidid>https://orcid.org/0000-0001-6090-4552</orcidid><orcidid>https://orcid.org/0000-0002-2021-5186</orcidid><orcidid>https://orcid.org/0000-0003-4171-1944</orcidid><orcidid>https://orcid.org/0000-0002-0184-8367</orcidid><orcidid>https://orcid.org/0000-0002-5693-7359</orcidid><orcidid>https://orcid.org/0000-0002-4473-2866</orcidid><orcidid>https://orcid.org/0000-0001-6873-7824</orcidid><orcidid>https://orcid.org/0000-0002-2985-462X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2024-07, Vol.21 (2), p.227-237
issn 1552-4450
1552-4469
1552-4469
language eng
recordid cdi_proquest_miscellaneous_3076018896
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/45/612/100/2285
631/92/607
Acetylation
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell activation
Cell adhesion
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chromatin
CRISPR
Demethylation
Enzymes
Epigenesis, Genetic
Epigenetics
Gene silencing
Genes
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histone H3
Histones
Histones - genetics
Histones - metabolism
Humans
K562 Cells
Lysine
Lysine - metabolism
Mutants
Protein Engineering
Regulatory sequences
Transcription activation
title Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20histone%20modification%20crosstalk%20by%20engineering%20lysine%20demethylase%20LSD1&rft.jtitle=Nature%20chemical%20biology&rft.au=Lee,%20Kwangwoon&rft.date=2024-07-04&rft.volume=21&rft.issue=2&rft.spage=227&rft.epage=237&rft.pages=227-237&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-024-01671-9&rft_dat=%3Cproquest_cross%3E3161614337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3161614337&rft_id=info:pmid/38965385&rfr_iscdi=true