Development and Validation of the Hospital Medicine Safety Sepsis Initiative Mortality Model

When comparing outcomes after sepsis, it is essential to account for patient case mix to make fair comparisons. We developed a model to assess risk-adjusted 30-day mortality in the Michigan Hospital Medicine Safety sepsis initiative (HMS-Sepsis). Can HMS-Sepsis registry data adequately predict risk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chest 2024-11, Vol.166 (5), p.1035-1045
Hauptverfasser: Prescott, Hallie C., Heath, Megan, Munroe, Elizabeth S., Blamoun, John, Bozyk, Paul, Hechtman, Rachel K., Horowitz, Jennifer K., Jayaprakash, Namita, Kocher, Keith E., Younas, Mariam, Taylor, Stephanie P., Posa, Patricia J., McLaughlin, Elizabeth, Flanders, Scott A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1045
container_issue 5
container_start_page 1035
container_title Chest
container_volume 166
creator Prescott, Hallie C.
Heath, Megan
Munroe, Elizabeth S.
Blamoun, John
Bozyk, Paul
Hechtman, Rachel K.
Horowitz, Jennifer K.
Jayaprakash, Namita
Kocher, Keith E.
Younas, Mariam
Taylor, Stephanie P.
Posa, Patricia J.
McLaughlin, Elizabeth
Flanders, Scott A.
description When comparing outcomes after sepsis, it is essential to account for patient case mix to make fair comparisons. We developed a model to assess risk-adjusted 30-day mortality in the Michigan Hospital Medicine Safety sepsis initiative (HMS-Sepsis). Can HMS-Sepsis registry data adequately predict risk of 30-day mortality? Do performance assessments using adjusted vs unadjusted data differ? Retrospective cohort of community-onset sepsis hospitalizations in the HMS-Sepsis registry (April 2022-September 2023), with split derivation (70%) and validation (30%) cohorts. We fit a risk-adjustment model (HMS-Sepsis mortality model) incorporating acute physiologic, demographic, and baseline health data and assessed model performance using concordance (C) statistics, Brier scores, and comparisons of predicted vs observed mortality by deciles of risk. We compared hospital performance (first quintile, middle quintiles, fifth quintile) using observed vs adjusted mortality to understand the extent to which risk adjustment impacted hospital performance assessment. Among 17,514 hospitalizations from 66 hospitals during the study period, 12,260 hospitalizations (70%) were used for model derivation and 5,254 hospitalizations (30%) were used for model validation. Thirty-day mortality for the total cohort was 19.4%. The final model included 13 physiologic variables, two physiologic interactions, and 16 demographic and chronic health variables. The most significant variables were age, metastatic solid tumor, temperature, altered mental status, and platelet count. The model C statistic was 0.82 for the derivation cohort, 0.81 for the validation cohort, and ≥ 0.78 for all subgroups assessed. Overall calibration error was 0.0%, and mean calibration error across deciles of risk was 1.5%. Standardized mortality ratios yielded different assessments than observed mortality for 33.9% of hospitals. The HMS-Sepsis mortality model showed strong discrimination and adequate calibration and reclassified one-third of hospitals to a different performance category from unadjusted mortality. Based on its strong performance, the HMS-Sepsis mortality model may aid in fair hospital benchmarking, assessment of temporal changes, and observational causal inference analysis.
doi_str_mv 10.1016/j.chest.2024.06.3769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076018195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012369224045719</els_id><sourcerecordid>3076018195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-7d777da40acfe0ef155f0190707e2cd6b2c67dcbec277ee4055cd3a6c56da0aa3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqv_QCRHL7tONruJexHEb7B4qHoSQprMYsp2s27SQv-9qVWPnoZhnneGeQg5YZAzYOJ8npsPDDEvoChzEDmXot4hI1ZzlvGq5LtkBMCKjIu6OCCHIcwh9awW--SAX9SiFJKPyPsNrrD1_QK7SHVn6ZtundXR-Y76hsYPpA8-9C7qlk7QOuM6pFPdYFzTKfbBBfrYuehSYoV04ocEujSbeIvtEdlrdBvw-KeOyevd7cv1Q_b0fP94ffWUmaJkMZNWSml1Cdo0CNiwqmqA1SBBYmGsmBVGSGtmaAopEUuoKmO5FqYSVoPWfEzOtnv7wX8ukxS1cMFg2-oO_TIoDlIAu2B1ldByi5rBhzBgo_rBLfSwVgzUxquaq2-vauNVgVAbryl2-nNhOVug_Qv9ikzA5RbA9OfK4aCCcdiZpGxAE5X17v8LXxkJjDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076018195</pqid></control><display><type>article</type><title>Development and Validation of the Hospital Medicine Safety Sepsis Initiative Mortality Model</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Prescott, Hallie C. ; Heath, Megan ; Munroe, Elizabeth S. ; Blamoun, John ; Bozyk, Paul ; Hechtman, Rachel K. ; Horowitz, Jennifer K. ; Jayaprakash, Namita ; Kocher, Keith E. ; Younas, Mariam ; Taylor, Stephanie P. ; Posa, Patricia J. ; McLaughlin, Elizabeth ; Flanders, Scott A.</creator><creatorcontrib>Prescott, Hallie C. ; Heath, Megan ; Munroe, Elizabeth S. ; Blamoun, John ; Bozyk, Paul ; Hechtman, Rachel K. ; Horowitz, Jennifer K. ; Jayaprakash, Namita ; Kocher, Keith E. ; Younas, Mariam ; Taylor, Stephanie P. ; Posa, Patricia J. ; McLaughlin, Elizabeth ; Flanders, Scott A.</creatorcontrib><description>When comparing outcomes after sepsis, it is essential to account for patient case mix to make fair comparisons. We developed a model to assess risk-adjusted 30-day mortality in the Michigan Hospital Medicine Safety sepsis initiative (HMS-Sepsis). Can HMS-Sepsis registry data adequately predict risk of 30-day mortality? Do performance assessments using adjusted vs unadjusted data differ? Retrospective cohort of community-onset sepsis hospitalizations in the HMS-Sepsis registry (April 2022-September 2023), with split derivation (70%) and validation (30%) cohorts. We fit a risk-adjustment model (HMS-Sepsis mortality model) incorporating acute physiologic, demographic, and baseline health data and assessed model performance using concordance (C) statistics, Brier scores, and comparisons of predicted vs observed mortality by deciles of risk. We compared hospital performance (first quintile, middle quintiles, fifth quintile) using observed vs adjusted mortality to understand the extent to which risk adjustment impacted hospital performance assessment. Among 17,514 hospitalizations from 66 hospitals during the study period, 12,260 hospitalizations (70%) were used for model derivation and 5,254 hospitalizations (30%) were used for model validation. Thirty-day mortality for the total cohort was 19.4%. The final model included 13 physiologic variables, two physiologic interactions, and 16 demographic and chronic health variables. The most significant variables were age, metastatic solid tumor, temperature, altered mental status, and platelet count. The model C statistic was 0.82 for the derivation cohort, 0.81 for the validation cohort, and ≥ 0.78 for all subgroups assessed. Overall calibration error was 0.0%, and mean calibration error across deciles of risk was 1.5%. Standardized mortality ratios yielded different assessments than observed mortality for 33.9% of hospitals. The HMS-Sepsis mortality model showed strong discrimination and adequate calibration and reclassified one-third of hospitals to a different performance category from unadjusted mortality. Based on its strong performance, the HMS-Sepsis mortality model may aid in fair hospital benchmarking, assessment of temporal changes, and observational causal inference analysis.</description><identifier>ISSN: 0012-3692</identifier><identifier>ISSN: 1931-3543</identifier><identifier>EISSN: 1931-3543</identifier><identifier>DOI: 10.1016/j.chest.2024.06.3769</identifier><identifier>PMID: 38964673</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; benchmarking ; Female ; health care quality indicator ; Hospital Mortality ; hospitalization ; Hospitalization - statistics &amp; numerical data ; Humans ; Male ; Michigan - epidemiology ; Middle Aged ; Registries ; Retrospective Studies ; risk adjustment ; Risk Adjustment - methods ; Risk Assessment - methods ; Sepsis - mortality</subject><ispartof>Chest, 2024-11, Vol.166 (5), p.1035-1045</ispartof><rights>2024</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-7d777da40acfe0ef155f0190707e2cd6b2c67dcbec277ee4055cd3a6c56da0aa3</cites><orcidid>0009-0004-7976-0228 ; 0000-0003-1112-7392 ; 0000-0002-6052-7977 ; 0000-0002-8442-6724 ; 0000-0002-9479-1653 ; 0000-0003-3353-612X ; 0000-0001-7256-8859 ; 0000-0002-2545-0636 ; 0009-0005-9120-0896 ; 0000-0003-4045-2936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38964673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prescott, Hallie C.</creatorcontrib><creatorcontrib>Heath, Megan</creatorcontrib><creatorcontrib>Munroe, Elizabeth S.</creatorcontrib><creatorcontrib>Blamoun, John</creatorcontrib><creatorcontrib>Bozyk, Paul</creatorcontrib><creatorcontrib>Hechtman, Rachel K.</creatorcontrib><creatorcontrib>Horowitz, Jennifer K.</creatorcontrib><creatorcontrib>Jayaprakash, Namita</creatorcontrib><creatorcontrib>Kocher, Keith E.</creatorcontrib><creatorcontrib>Younas, Mariam</creatorcontrib><creatorcontrib>Taylor, Stephanie P.</creatorcontrib><creatorcontrib>Posa, Patricia J.</creatorcontrib><creatorcontrib>McLaughlin, Elizabeth</creatorcontrib><creatorcontrib>Flanders, Scott A.</creatorcontrib><title>Development and Validation of the Hospital Medicine Safety Sepsis Initiative Mortality Model</title><title>Chest</title><addtitle>Chest</addtitle><description>When comparing outcomes after sepsis, it is essential to account for patient case mix to make fair comparisons. We developed a model to assess risk-adjusted 30-day mortality in the Michigan Hospital Medicine Safety sepsis initiative (HMS-Sepsis). Can HMS-Sepsis registry data adequately predict risk of 30-day mortality? Do performance assessments using adjusted vs unadjusted data differ? Retrospective cohort of community-onset sepsis hospitalizations in the HMS-Sepsis registry (April 2022-September 2023), with split derivation (70%) and validation (30%) cohorts. We fit a risk-adjustment model (HMS-Sepsis mortality model) incorporating acute physiologic, demographic, and baseline health data and assessed model performance using concordance (C) statistics, Brier scores, and comparisons of predicted vs observed mortality by deciles of risk. We compared hospital performance (first quintile, middle quintiles, fifth quintile) using observed vs adjusted mortality to understand the extent to which risk adjustment impacted hospital performance assessment. Among 17,514 hospitalizations from 66 hospitals during the study period, 12,260 hospitalizations (70%) were used for model derivation and 5,254 hospitalizations (30%) were used for model validation. Thirty-day mortality for the total cohort was 19.4%. The final model included 13 physiologic variables, two physiologic interactions, and 16 demographic and chronic health variables. The most significant variables were age, metastatic solid tumor, temperature, altered mental status, and platelet count. The model C statistic was 0.82 for the derivation cohort, 0.81 for the validation cohort, and ≥ 0.78 for all subgroups assessed. Overall calibration error was 0.0%, and mean calibration error across deciles of risk was 1.5%. Standardized mortality ratios yielded different assessments than observed mortality for 33.9% of hospitals. The HMS-Sepsis mortality model showed strong discrimination and adequate calibration and reclassified one-third of hospitals to a different performance category from unadjusted mortality. Based on its strong performance, the HMS-Sepsis mortality model may aid in fair hospital benchmarking, assessment of temporal changes, and observational causal inference analysis.</description><subject>Aged</subject><subject>benchmarking</subject><subject>Female</subject><subject>health care quality indicator</subject><subject>Hospital Mortality</subject><subject>hospitalization</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Male</subject><subject>Michigan - epidemiology</subject><subject>Middle Aged</subject><subject>Registries</subject><subject>Retrospective Studies</subject><subject>risk adjustment</subject><subject>Risk Adjustment - methods</subject><subject>Risk Assessment - methods</subject><subject>Sepsis - mortality</subject><issn>0012-3692</issn><issn>1931-3543</issn><issn>1931-3543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqv_QCRHL7tONruJexHEb7B4qHoSQprMYsp2s27SQv-9qVWPnoZhnneGeQg5YZAzYOJ8npsPDDEvoChzEDmXot4hI1ZzlvGq5LtkBMCKjIu6OCCHIcwh9awW--SAX9SiFJKPyPsNrrD1_QK7SHVn6ZtundXR-Y76hsYPpA8-9C7qlk7QOuM6pFPdYFzTKfbBBfrYuehSYoV04ocEujSbeIvtEdlrdBvw-KeOyevd7cv1Q_b0fP94ffWUmaJkMZNWSml1Cdo0CNiwqmqA1SBBYmGsmBVGSGtmaAopEUuoKmO5FqYSVoPWfEzOtnv7wX8ukxS1cMFg2-oO_TIoDlIAu2B1ldByi5rBhzBgo_rBLfSwVgzUxquaq2-vauNVgVAbryl2-nNhOVug_Qv9ikzA5RbA9OfK4aCCcdiZpGxAE5X17v8LXxkJjDE</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Prescott, Hallie C.</creator><creator>Heath, Megan</creator><creator>Munroe, Elizabeth S.</creator><creator>Blamoun, John</creator><creator>Bozyk, Paul</creator><creator>Hechtman, Rachel K.</creator><creator>Horowitz, Jennifer K.</creator><creator>Jayaprakash, Namita</creator><creator>Kocher, Keith E.</creator><creator>Younas, Mariam</creator><creator>Taylor, Stephanie P.</creator><creator>Posa, Patricia J.</creator><creator>McLaughlin, Elizabeth</creator><creator>Flanders, Scott A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-7976-0228</orcidid><orcidid>https://orcid.org/0000-0003-1112-7392</orcidid><orcidid>https://orcid.org/0000-0002-6052-7977</orcidid><orcidid>https://orcid.org/0000-0002-8442-6724</orcidid><orcidid>https://orcid.org/0000-0002-9479-1653</orcidid><orcidid>https://orcid.org/0000-0003-3353-612X</orcidid><orcidid>https://orcid.org/0000-0001-7256-8859</orcidid><orcidid>https://orcid.org/0000-0002-2545-0636</orcidid><orcidid>https://orcid.org/0009-0005-9120-0896</orcidid><orcidid>https://orcid.org/0000-0003-4045-2936</orcidid></search><sort><creationdate>202411</creationdate><title>Development and Validation of the Hospital Medicine Safety Sepsis Initiative Mortality Model</title><author>Prescott, Hallie C. ; Heath, Megan ; Munroe, Elizabeth S. ; Blamoun, John ; Bozyk, Paul ; Hechtman, Rachel K. ; Horowitz, Jennifer K. ; Jayaprakash, Namita ; Kocher, Keith E. ; Younas, Mariam ; Taylor, Stephanie P. ; Posa, Patricia J. ; McLaughlin, Elizabeth ; Flanders, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-7d777da40acfe0ef155f0190707e2cd6b2c67dcbec277ee4055cd3a6c56da0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>benchmarking</topic><topic>Female</topic><topic>health care quality indicator</topic><topic>Hospital Mortality</topic><topic>hospitalization</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Male</topic><topic>Michigan - epidemiology</topic><topic>Middle Aged</topic><topic>Registries</topic><topic>Retrospective Studies</topic><topic>risk adjustment</topic><topic>Risk Adjustment - methods</topic><topic>Risk Assessment - methods</topic><topic>Sepsis - mortality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prescott, Hallie C.</creatorcontrib><creatorcontrib>Heath, Megan</creatorcontrib><creatorcontrib>Munroe, Elizabeth S.</creatorcontrib><creatorcontrib>Blamoun, John</creatorcontrib><creatorcontrib>Bozyk, Paul</creatorcontrib><creatorcontrib>Hechtman, Rachel K.</creatorcontrib><creatorcontrib>Horowitz, Jennifer K.</creatorcontrib><creatorcontrib>Jayaprakash, Namita</creatorcontrib><creatorcontrib>Kocher, Keith E.</creatorcontrib><creatorcontrib>Younas, Mariam</creatorcontrib><creatorcontrib>Taylor, Stephanie P.</creatorcontrib><creatorcontrib>Posa, Patricia J.</creatorcontrib><creatorcontrib>McLaughlin, Elizabeth</creatorcontrib><creatorcontrib>Flanders, Scott A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chest</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prescott, Hallie C.</au><au>Heath, Megan</au><au>Munroe, Elizabeth S.</au><au>Blamoun, John</au><au>Bozyk, Paul</au><au>Hechtman, Rachel K.</au><au>Horowitz, Jennifer K.</au><au>Jayaprakash, Namita</au><au>Kocher, Keith E.</au><au>Younas, Mariam</au><au>Taylor, Stephanie P.</au><au>Posa, Patricia J.</au><au>McLaughlin, Elizabeth</au><au>Flanders, Scott A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of the Hospital Medicine Safety Sepsis Initiative Mortality Model</atitle><jtitle>Chest</jtitle><addtitle>Chest</addtitle><date>2024-11</date><risdate>2024</risdate><volume>166</volume><issue>5</issue><spage>1035</spage><epage>1045</epage><pages>1035-1045</pages><issn>0012-3692</issn><issn>1931-3543</issn><eissn>1931-3543</eissn><abstract>When comparing outcomes after sepsis, it is essential to account for patient case mix to make fair comparisons. We developed a model to assess risk-adjusted 30-day mortality in the Michigan Hospital Medicine Safety sepsis initiative (HMS-Sepsis). Can HMS-Sepsis registry data adequately predict risk of 30-day mortality? Do performance assessments using adjusted vs unadjusted data differ? Retrospective cohort of community-onset sepsis hospitalizations in the HMS-Sepsis registry (April 2022-September 2023), with split derivation (70%) and validation (30%) cohorts. We fit a risk-adjustment model (HMS-Sepsis mortality model) incorporating acute physiologic, demographic, and baseline health data and assessed model performance using concordance (C) statistics, Brier scores, and comparisons of predicted vs observed mortality by deciles of risk. We compared hospital performance (first quintile, middle quintiles, fifth quintile) using observed vs adjusted mortality to understand the extent to which risk adjustment impacted hospital performance assessment. Among 17,514 hospitalizations from 66 hospitals during the study period, 12,260 hospitalizations (70%) were used for model derivation and 5,254 hospitalizations (30%) were used for model validation. Thirty-day mortality for the total cohort was 19.4%. The final model included 13 physiologic variables, two physiologic interactions, and 16 demographic and chronic health variables. The most significant variables were age, metastatic solid tumor, temperature, altered mental status, and platelet count. The model C statistic was 0.82 for the derivation cohort, 0.81 for the validation cohort, and ≥ 0.78 for all subgroups assessed. Overall calibration error was 0.0%, and mean calibration error across deciles of risk was 1.5%. Standardized mortality ratios yielded different assessments than observed mortality for 33.9% of hospitals. The HMS-Sepsis mortality model showed strong discrimination and adequate calibration and reclassified one-third of hospitals to a different performance category from unadjusted mortality. Based on its strong performance, the HMS-Sepsis mortality model may aid in fair hospital benchmarking, assessment of temporal changes, and observational causal inference analysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38964673</pmid><doi>10.1016/j.chest.2024.06.3769</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0004-7976-0228</orcidid><orcidid>https://orcid.org/0000-0003-1112-7392</orcidid><orcidid>https://orcid.org/0000-0002-6052-7977</orcidid><orcidid>https://orcid.org/0000-0002-8442-6724</orcidid><orcidid>https://orcid.org/0000-0002-9479-1653</orcidid><orcidid>https://orcid.org/0000-0003-3353-612X</orcidid><orcidid>https://orcid.org/0000-0001-7256-8859</orcidid><orcidid>https://orcid.org/0000-0002-2545-0636</orcidid><orcidid>https://orcid.org/0009-0005-9120-0896</orcidid><orcidid>https://orcid.org/0000-0003-4045-2936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-3692
ispartof Chest, 2024-11, Vol.166 (5), p.1035-1045
issn 0012-3692
1931-3543
1931-3543
language eng
recordid cdi_proquest_miscellaneous_3076018195
source MEDLINE; Alma/SFX Local Collection
subjects Aged
benchmarking
Female
health care quality indicator
Hospital Mortality
hospitalization
Hospitalization - statistics & numerical data
Humans
Male
Michigan - epidemiology
Middle Aged
Registries
Retrospective Studies
risk adjustment
Risk Adjustment - methods
Risk Assessment - methods
Sepsis - mortality
title Development and Validation of the Hospital Medicine Safety Sepsis Initiative Mortality Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20the%20Hospital%20Medicine%20Safety%20Sepsis%20Initiative%20Mortality%20Model&rft.jtitle=Chest&rft.au=Prescott,%20Hallie%20C.&rft.date=2024-11&rft.volume=166&rft.issue=5&rft.spage=1035&rft.epage=1045&rft.pages=1035-1045&rft.issn=0012-3692&rft.eissn=1931-3543&rft_id=info:doi/10.1016/j.chest.2024.06.3769&rft_dat=%3Cproquest_cross%3E3076018195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076018195&rft_id=info:pmid/38964673&rft_els_id=S0012369224045719&rfr_iscdi=true