Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum

Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2024-09, Vol.157, p.106642, Article 106642
Hauptverfasser: Ajam, Alaa, Huang, Yuwan, Islam, Md Shariful, Kilian, Kristopher A., Kruzic, Jamie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106642
container_title Journal of the mechanical behavior of biomedical materials
container_volume 157
creator Ajam, Alaa
Huang, Yuwan
Islam, Md Shariful
Kilian, Kristopher A.
Kruzic, Jamie J.
description Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.
doi_str_mv 10.1016/j.jmbbm.2024.106642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076018064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616124002741</els_id><sourcerecordid>3076018064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-da9c6ecf6596f2eab23f42d822149a3783c62cc392add0ffd9d5edbc839450bc3</originalsourceid><addsrcrecordid>eNp9kMtOGzEUQK2KqkDgC5CQl2wm-DFx7AWLCtGCFNRNu7b8uE4cZsbBngnK3zNJoEtW96FzHzoIXVEypYSK2_V03VrbThlh9dgRombf0BmVc1kRKsnJmM9ntBJU0FN0XsqaEEGIlD_QKZdKcKXkGYrP4Fami8402HQe25iatDyUFlZmG1PGKWCfBtsA7qB_S_kFr3Y-pyU0BWeIXUjZgcdvsV9h0yxjZ3rAW8hlKHiEGtPh5dBeoO_BNAUuP-IE_fv18Pf-sVr8-f10_3NROSbrvvJGOQEuiJkSgYGxjIeaeckYrZXhc8mdYM5xxYz3JASv_Ay8dZKrekas4xN0c9y7yel1gNLrNhZ3eAPSUDQnc7H3I-oR5UfU5VRKhqA3ObYm7zQleu9Yr_XBsd471kfH49T1x4HBtuD_z3xKHYG7IzAKgm2ErIuL0I2OYgbXa5_ilwfeAcyMkJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076018064</pqid></control><display><type>article</type><title>Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ajam, Alaa ; Huang, Yuwan ; Islam, Md Shariful ; Kilian, Kristopher A. ; Kruzic, Jamie J.</creator><creatorcontrib>Ajam, Alaa ; Huang, Yuwan ; Islam, Md Shariful ; Kilian, Kristopher A. ; Kruzic, Jamie J.</creatorcontrib><description>Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.</description><identifier>ISSN: 1751-6161</identifier><identifier>ISSN: 1878-0180</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2024.106642</identifier><identifier>PMID: 38963998</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adipose derived stromal cells ; Alginate ; Alginates - chemistry ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Double network hydrogels ; Gellan gum ; Hydrogels - chemistry ; Materials Testing ; Mechanical Phenomena ; Mechanical properties ; Methacrylates - chemistry ; Mice ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polysaccharides, Bacterial - chemistry</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2024-09, Vol.157, p.106642, Article 106642</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-da9c6ecf6596f2eab23f42d822149a3783c62cc392add0ffd9d5edbc839450bc3</cites><orcidid>0000-0002-9695-1921 ; 0009-0004-6048-8068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616124002741$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38963998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ajam, Alaa</creatorcontrib><creatorcontrib>Huang, Yuwan</creatorcontrib><creatorcontrib>Islam, Md Shariful</creatorcontrib><creatorcontrib>Kilian, Kristopher A.</creatorcontrib><creatorcontrib>Kruzic, Jamie J.</creatorcontrib><title>Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.</description><subject>Adipose derived stromal cells</subject><subject>Alginate</subject><subject>Alginates - chemistry</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Double network hydrogels</subject><subject>Gellan gum</subject><subject>Hydrogels - chemistry</subject><subject>Materials Testing</subject><subject>Mechanical Phenomena</subject><subject>Mechanical properties</subject><subject>Methacrylates - chemistry</subject><subject>Mice</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polysaccharides, Bacterial - chemistry</subject><issn>1751-6161</issn><issn>1878-0180</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOGzEUQK2KqkDgC5CQl2wm-DFx7AWLCtGCFNRNu7b8uE4cZsbBngnK3zNJoEtW96FzHzoIXVEypYSK2_V03VrbThlh9dgRombf0BmVc1kRKsnJmM9ntBJU0FN0XsqaEEGIlD_QKZdKcKXkGYrP4Fami8402HQe25iatDyUFlZmG1PGKWCfBtsA7qB_S_kFr3Y-pyU0BWeIXUjZgcdvsV9h0yxjZ3rAW8hlKHiEGtPh5dBeoO_BNAUuP-IE_fv18Pf-sVr8-f10_3NROSbrvvJGOQEuiJkSgYGxjIeaeckYrZXhc8mdYM5xxYz3JASv_Ay8dZKrekas4xN0c9y7yel1gNLrNhZ3eAPSUDQnc7H3I-oR5UfU5VRKhqA3ObYm7zQleu9Yr_XBsd471kfH49T1x4HBtuD_z3xKHYG7IzAKgm2ErIuL0I2OYgbXa5_ilwfeAcyMkJE</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Ajam, Alaa</creator><creator>Huang, Yuwan</creator><creator>Islam, Md Shariful</creator><creator>Kilian, Kristopher A.</creator><creator>Kruzic, Jamie J.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9695-1921</orcidid><orcidid>https://orcid.org/0009-0004-6048-8068</orcidid></search><sort><creationdate>202409</creationdate><title>Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum</title><author>Ajam, Alaa ; Huang, Yuwan ; Islam, Md Shariful ; Kilian, Kristopher A. ; Kruzic, Jamie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-da9c6ecf6596f2eab23f42d822149a3783c62cc392add0ffd9d5edbc839450bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipose derived stromal cells</topic><topic>Alginate</topic><topic>Alginates - chemistry</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Double network hydrogels</topic><topic>Gellan gum</topic><topic>Hydrogels - chemistry</topic><topic>Materials Testing</topic><topic>Mechanical Phenomena</topic><topic>Mechanical properties</topic><topic>Methacrylates - chemistry</topic><topic>Mice</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polysaccharides, Bacterial - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajam, Alaa</creatorcontrib><creatorcontrib>Huang, Yuwan</creatorcontrib><creatorcontrib>Islam, Md Shariful</creatorcontrib><creatorcontrib>Kilian, Kristopher A.</creatorcontrib><creatorcontrib>Kruzic, Jamie J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajam, Alaa</au><au>Huang, Yuwan</au><au>Islam, Md Shariful</au><au>Kilian, Kristopher A.</au><au>Kruzic, Jamie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2024-09</date><risdate>2024</risdate><volume>157</volume><spage>106642</spage><pages>106642-</pages><artnum>106642</artnum><issn>1751-6161</issn><issn>1878-0180</issn><eissn>1878-0180</eissn><abstract>Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38963998</pmid><doi>10.1016/j.jmbbm.2024.106642</doi><orcidid>https://orcid.org/0000-0002-9695-1921</orcidid><orcidid>https://orcid.org/0009-0004-6048-8068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2024-09, Vol.157, p.106642, Article 106642
issn 1751-6161
1878-0180
1878-0180
language eng
recordid cdi_proquest_miscellaneous_3076018064
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adipose derived stromal cells
Alginate
Alginates - chemistry
Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Double network hydrogels
Gellan gum
Hydrogels - chemistry
Materials Testing
Mechanical Phenomena
Mechanical properties
Methacrylates - chemistry
Mice
Polyethylene glycol
Polyethylene Glycols - chemistry
Polysaccharides, Bacterial - chemistry
title Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20biological%20behavior%20of%20double%20network%20hydrogels%20reinforced%20with%20alginate%20versus%20gellan%20gum&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Ajam,%20Alaa&rft.date=2024-09&rft.volume=157&rft.spage=106642&rft.pages=106642-&rft.artnum=106642&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2024.106642&rft_dat=%3Cproquest_cross%3E3076018064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076018064&rft_id=info:pmid/38963998&rft_els_id=S1751616124002741&rfr_iscdi=true