Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage

Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (26), p.33396-33403
Hauptverfasser: Xu, Yang, Lu, Qi, Ke, Da, Zhu, Liang, Li, Ning, Wang, Qichao, Yang, Chenyu, Xiong, Xuyang, Hong, Jian, Zhou, Jingwen, Zhou, Xianlong, Zhang, Chaofeng, Zhou, Tengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33403
container_issue 26
container_start_page 33396
container_title ACS applied materials & interfaces
container_volume 16
creator Xu, Yang
Lu, Qi
Ke, Da
Zhu, Liang
Li, Ning
Wang, Qichao
Yang, Chenyu
Xiong, Xuyang
Hong, Jian
Zhou, Jingwen
Zhou, Xianlong
Zhang, Chaofeng
Zhou, Tengfei
description Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.
doi_str_mv 10.1021/acsami.4c04132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075702838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153642102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-3630b40205fabd7f94cd48672dd72aa24009712e5fdfc9449aef6a42a36e14883</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0EoqWwMqKMCCnFX_kaEaItUgUDYbauid2mSuxiO0P_e1ylVCyI6e7k3z2d30PoluApwZQ8QuWga6a8wpwweobGpOA8zmlCz0895yN05dwW45RRnFyiEcuLlCQZHqO2NDvTmnVTQRuVFrRTxnbgG6Mjo6LFvrZmLXVcSts1Gryso3loQTd9F3nza3gDbdxGSu-iIBHNwPlo2fjN4e3DGwtreY0uFLRO3hzrBH3OXsrnRbx8n78-Py1joDz3MUsZXnEcTlWwqjNV8KrmeZrRus4oBAbjIiNUJqpWVfhiAVKlwCmwVBKe52yC7gfdnTVfvXRedI2rZNuClqZ3gpGEpZwGA_9HcRZ8ojk7qE4HtLLGOSuV2NmmA7sXBItDGGIIQxzDCAt3R-1-1cn6hP-4H4CHAQiLYmt6q4Mrf6l9AwF9lQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075702838</pqid></control><display><type>article</type><title>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</title><source>ACS Publications</source><creator>Xu, Yang ; Lu, Qi ; Ke, Da ; Zhu, Liang ; Li, Ning ; Wang, Qichao ; Yang, Chenyu ; Xiong, Xuyang ; Hong, Jian ; Zhou, Jingwen ; Zhou, Xianlong ; Zhang, Chaofeng ; Zhou, Tengfei</creator><creatorcontrib>Xu, Yang ; Lu, Qi ; Ke, Da ; Zhu, Liang ; Li, Ning ; Wang, Qichao ; Yang, Chenyu ; Xiong, Xuyang ; Hong, Jian ; Zhou, Jingwen ; Zhou, Xianlong ; Zhang, Chaofeng ; Zhou, Tengfei</creatorcontrib><description>Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c04132</identifier><identifier>PMID: 38961570</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anodes ; composite materials ; diffusivity ; Energy, Environmental, and Catalysis Applications ; germanium ; graphene ; lithium ; nanosheets ; oxidation ; phase transition ; topology</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (26), p.33396-33403</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-3630b40205fabd7f94cd48672dd72aa24009712e5fdfc9449aef6a42a36e14883</cites><orcidid>0000-0001-6188-6886 ; 0009-0005-5500-5604 ; 0000-0002-7364-0434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c04132$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c04132$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38961570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Lu, Qi</creatorcontrib><creatorcontrib>Ke, Da</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Yang, Chenyu</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Hong, Jian</creatorcontrib><creatorcontrib>Zhou, Jingwen</creatorcontrib><creatorcontrib>Zhou, Xianlong</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><title>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.</description><subject>anodes</subject><subject>composite materials</subject><subject>diffusivity</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>germanium</subject><subject>graphene</subject><subject>lithium</subject><subject>nanosheets</subject><subject>oxidation</subject><subject>phase transition</subject><subject>topology</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb1PwzAQxS0EoqWwMqKMCCnFX_kaEaItUgUDYbauid2mSuxiO0P_e1ylVCyI6e7k3z2d30PoluApwZQ8QuWga6a8wpwweobGpOA8zmlCz0895yN05dwW45RRnFyiEcuLlCQZHqO2NDvTmnVTQRuVFrRTxnbgG6Mjo6LFvrZmLXVcSts1Gryso3loQTd9F3nza3gDbdxGSu-iIBHNwPlo2fjN4e3DGwtreY0uFLRO3hzrBH3OXsrnRbx8n78-Py1joDz3MUsZXnEcTlWwqjNV8KrmeZrRus4oBAbjIiNUJqpWVfhiAVKlwCmwVBKe52yC7gfdnTVfvXRedI2rZNuClqZ3gpGEpZwGA_9HcRZ8ojk7qE4HtLLGOSuV2NmmA7sXBItDGGIIQxzDCAt3R-1-1cn6hP-4H4CHAQiLYmt6q4Mrf6l9AwF9lQo</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Xu, Yang</creator><creator>Lu, Qi</creator><creator>Ke, Da</creator><creator>Zhu, Liang</creator><creator>Li, Ning</creator><creator>Wang, Qichao</creator><creator>Yang, Chenyu</creator><creator>Xiong, Xuyang</creator><creator>Hong, Jian</creator><creator>Zhou, Jingwen</creator><creator>Zhou, Xianlong</creator><creator>Zhang, Chaofeng</creator><creator>Zhou, Tengfei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6188-6886</orcidid><orcidid>https://orcid.org/0009-0005-5500-5604</orcidid><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></search><sort><creationdate>20240703</creationdate><title>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</title><author>Xu, Yang ; Lu, Qi ; Ke, Da ; Zhu, Liang ; Li, Ning ; Wang, Qichao ; Yang, Chenyu ; Xiong, Xuyang ; Hong, Jian ; Zhou, Jingwen ; Zhou, Xianlong ; Zhang, Chaofeng ; Zhou, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-3630b40205fabd7f94cd48672dd72aa24009712e5fdfc9449aef6a42a36e14883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>composite materials</topic><topic>diffusivity</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>germanium</topic><topic>graphene</topic><topic>lithium</topic><topic>nanosheets</topic><topic>oxidation</topic><topic>phase transition</topic><topic>topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Lu, Qi</creatorcontrib><creatorcontrib>Ke, Da</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Yang, Chenyu</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Hong, Jian</creatorcontrib><creatorcontrib>Zhou, Jingwen</creatorcontrib><creatorcontrib>Zhou, Xianlong</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yang</au><au>Lu, Qi</au><au>Ke, Da</au><au>Zhu, Liang</au><au>Li, Ning</au><au>Wang, Qichao</au><au>Yang, Chenyu</au><au>Xiong, Xuyang</au><au>Hong, Jian</au><au>Zhou, Jingwen</au><au>Zhou, Xianlong</au><au>Zhang, Chaofeng</au><au>Zhou, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>16</volume><issue>26</issue><spage>33396</spage><epage>33403</epage><pages>33396-33403</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38961570</pmid><doi>10.1021/acsami.4c04132</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6188-6886</orcidid><orcidid>https://orcid.org/0009-0005-5500-5604</orcidid><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.33396-33403
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3075702838
source ACS Publications
subjects anodes
composite materials
diffusivity
Energy, Environmental, and Catalysis Applications
germanium
graphene
lithium
nanosheets
oxidation
phase transition
topology
title Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Transformation%20of%20Hydrogen-Terminated%20Germanium%20to%20Germanium%20Nanosheets%20for%20Fast%20Lithium%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Yang&rft.date=2024-07-03&rft.volume=16&rft.issue=26&rft.spage=33396&rft.epage=33403&rft.pages=33396-33403&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c04132&rft_dat=%3Cproquest_cross%3E3153642102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075702838&rft_id=info:pmid/38961570&rfr_iscdi=true