Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage
Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (26), p.33396-33403 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33403 |
---|---|
container_issue | 26 |
container_start_page | 33396 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Xu, Yang Lu, Qi Ke, Da Zhu, Liang Li, Ning Wang, Qichao Yang, Chenyu Xiong, Xuyang Hong, Jian Zhou, Jingwen Zhou, Xianlong Zhang, Chaofeng Zhou, Tengfei |
description | Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs. |
doi_str_mv | 10.1021/acsami.4c04132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075702838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153642102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-3630b40205fabd7f94cd48672dd72aa24009712e5fdfc9449aef6a42a36e14883</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0EoqWwMqKMCCnFX_kaEaItUgUDYbauid2mSuxiO0P_e1ylVCyI6e7k3z2d30PoluApwZQ8QuWga6a8wpwweobGpOA8zmlCz0895yN05dwW45RRnFyiEcuLlCQZHqO2NDvTmnVTQRuVFrRTxnbgG6Mjo6LFvrZmLXVcSts1Gryso3loQTd9F3nza3gDbdxGSu-iIBHNwPlo2fjN4e3DGwtreY0uFLRO3hzrBH3OXsrnRbx8n78-Py1joDz3MUsZXnEcTlWwqjNV8KrmeZrRus4oBAbjIiNUJqpWVfhiAVKlwCmwVBKe52yC7gfdnTVfvXRedI2rZNuClqZ3gpGEpZwGA_9HcRZ8ojk7qE4HtLLGOSuV2NmmA7sXBItDGGIIQxzDCAt3R-1-1cn6hP-4H4CHAQiLYmt6q4Mrf6l9AwF9lQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075702838</pqid></control><display><type>article</type><title>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</title><source>ACS Publications</source><creator>Xu, Yang ; Lu, Qi ; Ke, Da ; Zhu, Liang ; Li, Ning ; Wang, Qichao ; Yang, Chenyu ; Xiong, Xuyang ; Hong, Jian ; Zhou, Jingwen ; Zhou, Xianlong ; Zhang, Chaofeng ; Zhou, Tengfei</creator><creatorcontrib>Xu, Yang ; Lu, Qi ; Ke, Da ; Zhu, Liang ; Li, Ning ; Wang, Qichao ; Yang, Chenyu ; Xiong, Xuyang ; Hong, Jian ; Zhou, Jingwen ; Zhou, Xianlong ; Zhang, Chaofeng ; Zhou, Tengfei</creatorcontrib><description>Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c04132</identifier><identifier>PMID: 38961570</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anodes ; composite materials ; diffusivity ; Energy, Environmental, and Catalysis Applications ; germanium ; graphene ; lithium ; nanosheets ; oxidation ; phase transition ; topology</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.33396-33403</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-3630b40205fabd7f94cd48672dd72aa24009712e5fdfc9449aef6a42a36e14883</cites><orcidid>0000-0001-6188-6886 ; 0009-0005-5500-5604 ; 0000-0002-7364-0434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c04132$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c04132$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38961570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Lu, Qi</creatorcontrib><creatorcontrib>Ke, Da</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Yang, Chenyu</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Hong, Jian</creatorcontrib><creatorcontrib>Zhou, Jingwen</creatorcontrib><creatorcontrib>Zhou, Xianlong</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><title>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.</description><subject>anodes</subject><subject>composite materials</subject><subject>diffusivity</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>germanium</subject><subject>graphene</subject><subject>lithium</subject><subject>nanosheets</subject><subject>oxidation</subject><subject>phase transition</subject><subject>topology</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb1PwzAQxS0EoqWwMqKMCCnFX_kaEaItUgUDYbauid2mSuxiO0P_e1ylVCyI6e7k3z2d30PoluApwZQ8QuWga6a8wpwweobGpOA8zmlCz0895yN05dwW45RRnFyiEcuLlCQZHqO2NDvTmnVTQRuVFrRTxnbgG6Mjo6LFvrZmLXVcSts1Gryso3loQTd9F3nza3gDbdxGSu-iIBHNwPlo2fjN4e3DGwtreY0uFLRO3hzrBH3OXsrnRbx8n78-Py1joDz3MUsZXnEcTlWwqjNV8KrmeZrRus4oBAbjIiNUJqpWVfhiAVKlwCmwVBKe52yC7gfdnTVfvXRedI2rZNuClqZ3gpGEpZwGA_9HcRZ8ojk7qE4HtLLGOSuV2NmmA7sXBItDGGIIQxzDCAt3R-1-1cn6hP-4H4CHAQiLYmt6q4Mrf6l9AwF9lQo</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Xu, Yang</creator><creator>Lu, Qi</creator><creator>Ke, Da</creator><creator>Zhu, Liang</creator><creator>Li, Ning</creator><creator>Wang, Qichao</creator><creator>Yang, Chenyu</creator><creator>Xiong, Xuyang</creator><creator>Hong, Jian</creator><creator>Zhou, Jingwen</creator><creator>Zhou, Xianlong</creator><creator>Zhang, Chaofeng</creator><creator>Zhou, Tengfei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6188-6886</orcidid><orcidid>https://orcid.org/0009-0005-5500-5604</orcidid><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></search><sort><creationdate>20240703</creationdate><title>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</title><author>Xu, Yang ; Lu, Qi ; Ke, Da ; Zhu, Liang ; Li, Ning ; Wang, Qichao ; Yang, Chenyu ; Xiong, Xuyang ; Hong, Jian ; Zhou, Jingwen ; Zhou, Xianlong ; Zhang, Chaofeng ; Zhou, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-3630b40205fabd7f94cd48672dd72aa24009712e5fdfc9449aef6a42a36e14883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>composite materials</topic><topic>diffusivity</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>germanium</topic><topic>graphene</topic><topic>lithium</topic><topic>nanosheets</topic><topic>oxidation</topic><topic>phase transition</topic><topic>topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Lu, Qi</creatorcontrib><creatorcontrib>Ke, Da</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Qichao</creatorcontrib><creatorcontrib>Yang, Chenyu</creatorcontrib><creatorcontrib>Xiong, Xuyang</creatorcontrib><creatorcontrib>Hong, Jian</creatorcontrib><creatorcontrib>Zhou, Jingwen</creatorcontrib><creatorcontrib>Zhou, Xianlong</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><creatorcontrib>Zhou, Tengfei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yang</au><au>Lu, Qi</au><au>Ke, Da</au><au>Zhu, Liang</au><au>Li, Ning</au><au>Wang, Qichao</au><au>Yang, Chenyu</au><au>Xiong, Xuyang</au><au>Hong, Jian</au><au>Zhou, Jingwen</au><au>Zhou, Xianlong</au><au>Zhang, Chaofeng</au><au>Zhou, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>16</volume><issue>26</issue><spage>33396</spage><epage>33403</epage><pages>33396-33403</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g–1 at a current density of 0.2 C and maintains a capacity of 456 mA h g–1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g–1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode’s potential as a highly viable option for LIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38961570</pmid><doi>10.1021/acsami.4c04132</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6188-6886</orcidid><orcidid>https://orcid.org/0009-0005-5500-5604</orcidid><orcidid>https://orcid.org/0000-0002-7364-0434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.33396-33403 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3075702838 |
source | ACS Publications |
subjects | anodes composite materials diffusivity Energy, Environmental, and Catalysis Applications germanium graphene lithium nanosheets oxidation phase transition topology |
title | Topological Transformation of Hydrogen-Terminated Germanium to Germanium Nanosheets for Fast Lithium Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Transformation%20of%20Hydrogen-Terminated%20Germanium%20to%20Germanium%20Nanosheets%20for%20Fast%20Lithium%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Yang&rft.date=2024-07-03&rft.volume=16&rft.issue=26&rft.spage=33396&rft.epage=33403&rft.pages=33396-33403&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c04132&rft_dat=%3Cproquest_cross%3E3153642102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075702838&rft_id=info:pmid/38961570&rfr_iscdi=true |