Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier

Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-07, Vol.31 (32), p.45310-45325
Hauptverfasser: Zhu, Kaofei, He, Yong, He, Qi, Lou, Wei, Zhang, Zhao, Zhang, Keneng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45325
container_issue 32
container_start_page 45310
container_title Environmental science and pollution research international
container_volume 31
creator Zhu, Kaofei
He, Yong
He, Qi
Lou, Wei
Zhang, Zhao
Zhang, Keneng
description Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient ( D e ) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier. Graphical abstract
doi_str_mv 10.1007/s11356-024-34170-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075701820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153724289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2044-915415481ffe766dcfd713fe41c955bb2a24b13c63721f63699ede8e6ab5ff813</originalsourceid><addsrcrecordid>eNqFkcFvFCEUxifGxtbqP-DBkHiph7E8YGA4mk3VJk28tF4Jwzy2NLNQgT3sf1-2W63xoAkJPN7v--Dl67p3QD8Bpeq8APBB9pSJngtQtBcvuhOQIHoltH75x_m4e13KHaWMaqZedcd81BIoYyddvfAeXS0keRJSDI6UmjGu6y2xcSYTxtpuK5Jsa0gkRVJvkWzC-rGOe9kqn_24_EhCJG6xO9yRksLSPyubW4iIGZudzTlgftMdebsUfPu0n3Y3Xy6uV9_6q-9fL1efr3rHqBC9hkG0NUL7opJydn5WwD0KcHoYpolZJibgTnLFwEsutcYZR5R2GrwfgZ92Zwff-5x-brFUswnF4bLYiGlbDIehSQUb9f9RqgZFYWS0oR_-Qu_SNsc2SKP2gAY2NIodKJdTKRm9uc9hY_POADX7-MwhPtPiM4_xGdFE75-st9MG59-SX3k1gB-A0lpxjfn57X_YPgAiL6Rp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082039125</pqid></control><display><type>article</type><title>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, Kaofei ; He, Yong ; He, Qi ; Lou, Wei ; Zhang, Zhao ; Zhang, Keneng</creator><creatorcontrib>Zhu, Kaofei ; He, Yong ; He, Qi ; Lou, Wei ; Zhang, Zhao ; Zhang, Keneng</creatorcontrib><description>Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient ( D e ) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier. Graphical abstract</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-34170-4</identifier><identifier>PMID: 38961022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bentonite ; Bentonite - chemistry ; Chromium ; Chromium - chemistry ; Clay ; Clay - chemistry ; Clay soils ; Compressive strength ; Containment ; Diffusion barriers ; Diffusion coefficient ; Diffusion layers ; diffusivity ; Earth and Environmental Science ; Ecotoxicology ; electrostatic interactions ; Environment ; Environmental Chemistry ; Environmental Health ; Flow paths ; Heavy metals ; Hydrogen-Ion Concentration ; Ionic strength ; Osmolar Concentration ; Owls ; pollution ; Research Article ; skeleton ; soil ; Soil - chemistry ; soil micromorphology ; Soil mixtures ; Soil Pollutants - chemistry ; Soil pollution ; Soil strength ; Soil testing ; Surface charge ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2024-07, Vol.31 (32), p.45310-45325</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2044-915415481ffe766dcfd713fe41c955bb2a24b13c63721f63699ede8e6ab5ff813</cites><orcidid>0000-0001-9653-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-34170-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-34170-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38961022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Kaofei</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>He, Qi</creatorcontrib><creatorcontrib>Lou, Wei</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Zhang, Keneng</creatorcontrib><title>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient ( D e ) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier. Graphical abstract</description><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bentonite</subject><subject>Bentonite - chemistry</subject><subject>Chromium</subject><subject>Chromium - chemistry</subject><subject>Clay</subject><subject>Clay - chemistry</subject><subject>Clay soils</subject><subject>Compressive strength</subject><subject>Containment</subject><subject>Diffusion barriers</subject><subject>Diffusion coefficient</subject><subject>Diffusion layers</subject><subject>diffusivity</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>electrostatic interactions</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Flow paths</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionic strength</subject><subject>Osmolar Concentration</subject><subject>Owls</subject><subject>pollution</subject><subject>Research Article</subject><subject>skeleton</subject><subject>soil</subject><subject>Soil - chemistry</subject><subject>soil micromorphology</subject><subject>Soil mixtures</subject><subject>Soil Pollutants - chemistry</subject><subject>Soil pollution</subject><subject>Soil strength</subject><subject>Soil testing</subject><subject>Surface charge</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFvFCEUxifGxtbqP-DBkHiph7E8YGA4mk3VJk28tF4Jwzy2NLNQgT3sf1-2W63xoAkJPN7v--Dl67p3QD8Bpeq8APBB9pSJngtQtBcvuhOQIHoltH75x_m4e13KHaWMaqZedcd81BIoYyddvfAeXS0keRJSDI6UmjGu6y2xcSYTxtpuK5Jsa0gkRVJvkWzC-rGOe9kqn_24_EhCJG6xO9yRksLSPyubW4iIGZudzTlgftMdebsUfPu0n3Y3Xy6uV9_6q-9fL1efr3rHqBC9hkG0NUL7opJydn5WwD0KcHoYpolZJibgTnLFwEsutcYZR5R2GrwfgZ92Zwff-5x-brFUswnF4bLYiGlbDIehSQUb9f9RqgZFYWS0oR_-Qu_SNsc2SKP2gAY2NIodKJdTKRm9uc9hY_POADX7-MwhPtPiM4_xGdFE75-st9MG59-SX3k1gB-A0lpxjfn57X_YPgAiL6Rp</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zhu, Kaofei</creator><creator>He, Yong</creator><creator>He, Qi</creator><creator>Lou, Wei</creator><creator>Zhang, Zhao</creator><creator>Zhang, Keneng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9653-6624</orcidid></search><sort><creationdate>202407</creationdate><title>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</title><author>Zhu, Kaofei ; He, Yong ; He, Qi ; Lou, Wei ; Zhang, Zhao ; Zhang, Keneng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2044-915415481ffe766dcfd713fe41c955bb2a24b13c63721f63699ede8e6ab5ff813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bentonite</topic><topic>Bentonite - chemistry</topic><topic>Chromium</topic><topic>Chromium - chemistry</topic><topic>Clay</topic><topic>Clay - chemistry</topic><topic>Clay soils</topic><topic>Compressive strength</topic><topic>Containment</topic><topic>Diffusion barriers</topic><topic>Diffusion coefficient</topic><topic>Diffusion layers</topic><topic>diffusivity</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>electrostatic interactions</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Flow paths</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionic strength</topic><topic>Osmolar Concentration</topic><topic>Owls</topic><topic>pollution</topic><topic>Research Article</topic><topic>skeleton</topic><topic>soil</topic><topic>Soil - chemistry</topic><topic>soil micromorphology</topic><topic>Soil mixtures</topic><topic>Soil Pollutants - chemistry</topic><topic>Soil pollution</topic><topic>Soil strength</topic><topic>Soil testing</topic><topic>Surface charge</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Kaofei</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>He, Qi</creatorcontrib><creatorcontrib>Lou, Wei</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Zhang, Keneng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Kaofei</au><au>He, Yong</au><au>He, Qi</au><au>Lou, Wei</au><au>Zhang, Zhao</au><au>Zhang, Keneng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-07</date><risdate>2024</risdate><volume>31</volume><issue>32</issue><spage>45310</spage><epage>45325</epage><pages>45310-45325</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient ( D e ) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38961022</pmid><doi>10.1007/s11356-024-34170-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9653-6624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2024-07, Vol.31 (32), p.45310-45325
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_3075701820
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adsorption
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bentonite
Bentonite - chemistry
Chromium
Chromium - chemistry
Clay
Clay - chemistry
Clay soils
Compressive strength
Containment
Diffusion barriers
Diffusion coefficient
Diffusion layers
diffusivity
Earth and Environmental Science
Ecotoxicology
electrostatic interactions
Environment
Environmental Chemistry
Environmental Health
Flow paths
Heavy metals
Hydrogen-Ion Concentration
Ionic strength
Osmolar Concentration
Owls
pollution
Research Article
skeleton
soil
Soil - chemistry
soil micromorphology
Soil mixtures
Soil Pollutants - chemistry
Soil pollution
Soil strength
Soil testing
Surface charge
Waste Water Technology
Water Management
Water Pollution Control
title Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20ionic%20strength%20and%20bentonite%20ratio%20on%20the%20migration%20of%20Cr(VI)%20in%20clayey%20soil-bentonite%20engineered%20barrier&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zhu,%20Kaofei&rft.date=2024-07&rft.volume=31&rft.issue=32&rft.spage=45310&rft.epage=45325&rft.pages=45310-45325&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-34170-4&rft_dat=%3Cproquest_cross%3E3153724289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082039125&rft_id=info:pmid/38961022&rfr_iscdi=true