Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier
Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2024-07, Vol.31 (32), p.45310-45325 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45325 |
---|---|
container_issue | 32 |
container_start_page | 45310 |
container_title | Environmental science and pollution research international |
container_volume | 31 |
creator | Zhu, Kaofei He, Yong He, Qi Lou, Wei Zhang, Zhao Zhang, Keneng |
description | Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (
D
e
) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.
Graphical abstract |
doi_str_mv | 10.1007/s11356-024-34170-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075701820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153724289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2044-915415481ffe766dcfd713fe41c955bb2a24b13c63721f63699ede8e6ab5ff813</originalsourceid><addsrcrecordid>eNqFkcFvFCEUxifGxtbqP-DBkHiph7E8YGA4mk3VJk28tF4Jwzy2NLNQgT3sf1-2W63xoAkJPN7v--Dl67p3QD8Bpeq8APBB9pSJngtQtBcvuhOQIHoltH75x_m4e13KHaWMaqZedcd81BIoYyddvfAeXS0keRJSDI6UmjGu6y2xcSYTxtpuK5Jsa0gkRVJvkWzC-rGOe9kqn_24_EhCJG6xO9yRksLSPyubW4iIGZudzTlgftMdebsUfPu0n3Y3Xy6uV9_6q-9fL1efr3rHqBC9hkG0NUL7opJydn5WwD0KcHoYpolZJibgTnLFwEsutcYZR5R2GrwfgZ92Zwff-5x-brFUswnF4bLYiGlbDIehSQUb9f9RqgZFYWS0oR_-Qu_SNsc2SKP2gAY2NIodKJdTKRm9uc9hY_POADX7-MwhPtPiM4_xGdFE75-st9MG59-SX3k1gB-A0lpxjfn57X_YPgAiL6Rp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082039125</pqid></control><display><type>article</type><title>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, Kaofei ; He, Yong ; He, Qi ; Lou, Wei ; Zhang, Zhao ; Zhang, Keneng</creator><creatorcontrib>Zhu, Kaofei ; He, Yong ; He, Qi ; Lou, Wei ; Zhang, Zhao ; Zhang, Keneng</creatorcontrib><description>Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (
D
e
) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.
Graphical abstract</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-34170-4</identifier><identifier>PMID: 38961022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bentonite ; Bentonite - chemistry ; Chromium ; Chromium - chemistry ; Clay ; Clay - chemistry ; Clay soils ; Compressive strength ; Containment ; Diffusion barriers ; Diffusion coefficient ; Diffusion layers ; diffusivity ; Earth and Environmental Science ; Ecotoxicology ; electrostatic interactions ; Environment ; Environmental Chemistry ; Environmental Health ; Flow paths ; Heavy metals ; Hydrogen-Ion Concentration ; Ionic strength ; Osmolar Concentration ; Owls ; pollution ; Research Article ; skeleton ; soil ; Soil - chemistry ; soil micromorphology ; Soil mixtures ; Soil Pollutants - chemistry ; Soil pollution ; Soil strength ; Soil testing ; Surface charge ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2024-07, Vol.31 (32), p.45310-45325</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2044-915415481ffe766dcfd713fe41c955bb2a24b13c63721f63699ede8e6ab5ff813</cites><orcidid>0000-0001-9653-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-34170-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-34170-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38961022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Kaofei</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>He, Qi</creatorcontrib><creatorcontrib>Lou, Wei</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Zhang, Keneng</creatorcontrib><title>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (
D
e
) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.
Graphical abstract</description><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bentonite</subject><subject>Bentonite - chemistry</subject><subject>Chromium</subject><subject>Chromium - chemistry</subject><subject>Clay</subject><subject>Clay - chemistry</subject><subject>Clay soils</subject><subject>Compressive strength</subject><subject>Containment</subject><subject>Diffusion barriers</subject><subject>Diffusion coefficient</subject><subject>Diffusion layers</subject><subject>diffusivity</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>electrostatic interactions</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Flow paths</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionic strength</subject><subject>Osmolar Concentration</subject><subject>Owls</subject><subject>pollution</subject><subject>Research Article</subject><subject>skeleton</subject><subject>soil</subject><subject>Soil - chemistry</subject><subject>soil micromorphology</subject><subject>Soil mixtures</subject><subject>Soil Pollutants - chemistry</subject><subject>Soil pollution</subject><subject>Soil strength</subject><subject>Soil testing</subject><subject>Surface charge</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFvFCEUxifGxtbqP-DBkHiph7E8YGA4mk3VJk28tF4Jwzy2NLNQgT3sf1-2W63xoAkJPN7v--Dl67p3QD8Bpeq8APBB9pSJngtQtBcvuhOQIHoltH75x_m4e13KHaWMaqZedcd81BIoYyddvfAeXS0keRJSDI6UmjGu6y2xcSYTxtpuK5Jsa0gkRVJvkWzC-rGOe9kqn_24_EhCJG6xO9yRksLSPyubW4iIGZudzTlgftMdebsUfPu0n3Y3Xy6uV9_6q-9fL1efr3rHqBC9hkG0NUL7opJydn5WwD0KcHoYpolZJibgTnLFwEsutcYZR5R2GrwfgZ92Zwff-5x-brFUswnF4bLYiGlbDIehSQUb9f9RqgZFYWS0oR_-Qu_SNsc2SKP2gAY2NIodKJdTKRm9uc9hY_POADX7-MwhPtPiM4_xGdFE75-st9MG59-SX3k1gB-A0lpxjfn57X_YPgAiL6Rp</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zhu, Kaofei</creator><creator>He, Yong</creator><creator>He, Qi</creator><creator>Lou, Wei</creator><creator>Zhang, Zhao</creator><creator>Zhang, Keneng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9653-6624</orcidid></search><sort><creationdate>202407</creationdate><title>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</title><author>Zhu, Kaofei ; He, Yong ; He, Qi ; Lou, Wei ; Zhang, Zhao ; Zhang, Keneng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2044-915415481ffe766dcfd713fe41c955bb2a24b13c63721f63699ede8e6ab5ff813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bentonite</topic><topic>Bentonite - chemistry</topic><topic>Chromium</topic><topic>Chromium - chemistry</topic><topic>Clay</topic><topic>Clay - chemistry</topic><topic>Clay soils</topic><topic>Compressive strength</topic><topic>Containment</topic><topic>Diffusion barriers</topic><topic>Diffusion coefficient</topic><topic>Diffusion layers</topic><topic>diffusivity</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>electrostatic interactions</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Flow paths</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionic strength</topic><topic>Osmolar Concentration</topic><topic>Owls</topic><topic>pollution</topic><topic>Research Article</topic><topic>skeleton</topic><topic>soil</topic><topic>Soil - chemistry</topic><topic>soil micromorphology</topic><topic>Soil mixtures</topic><topic>Soil Pollutants - chemistry</topic><topic>Soil pollution</topic><topic>Soil strength</topic><topic>Soil testing</topic><topic>Surface charge</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Kaofei</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>He, Qi</creatorcontrib><creatorcontrib>Lou, Wei</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Zhang, Keneng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Kaofei</au><au>He, Yong</au><au>He, Qi</au><au>Lou, Wei</au><au>Zhang, Zhao</au><au>Zhang, Keneng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-07</date><risdate>2024</risdate><volume>31</volume><issue>32</issue><spage>45310</spage><epage>45325</epage><pages>45310-45325</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (
D
e
) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38961022</pmid><doi>10.1007/s11356-024-34170-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9653-6624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2024-07, Vol.31 (32), p.45310-45325 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_3075701820 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adsorption Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bentonite Bentonite - chemistry Chromium Chromium - chemistry Clay Clay - chemistry Clay soils Compressive strength Containment Diffusion barriers Diffusion coefficient Diffusion layers diffusivity Earth and Environmental Science Ecotoxicology electrostatic interactions Environment Environmental Chemistry Environmental Health Flow paths Heavy metals Hydrogen-Ion Concentration Ionic strength Osmolar Concentration Owls pollution Research Article skeleton soil Soil - chemistry soil micromorphology Soil mixtures Soil Pollutants - chemistry Soil pollution Soil strength Soil testing Surface charge Waste Water Technology Water Management Water Pollution Control |
title | Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20ionic%20strength%20and%20bentonite%20ratio%20on%20the%20migration%20of%20Cr(VI)%20in%20clayey%20soil-bentonite%20engineered%20barrier&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zhu,%20Kaofei&rft.date=2024-07&rft.volume=31&rft.issue=32&rft.spage=45310&rft.epage=45325&rft.pages=45310-45325&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-34170-4&rft_dat=%3Cproquest_cross%3E3153724289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082039125&rft_id=info:pmid/38961022&rfr_iscdi=true |