Gapr for large-scale collaborative single-neuron reconstruction
Whole-brain analysis of single-neuron morphology is crucial for unraveling the complex structure of the brain. However, large-scale neuron reconstruction from terabyte and even petabyte data of mammalian brains generated by state-of-the-art light microscopy is a daunting task. Here, we developed ‘Ga...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-10, Vol.21 (10), p.1926-1935 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1935 |
---|---|
container_issue | 10 |
container_start_page | 1926 |
container_title | Nature methods |
container_volume | 21 |
creator | Gou, Lingfeng Wang, Yanzhi Gao, Le Zhong, Yiting Xie, Lucheng Wang, Haifang Zha, Xi Shao, Yinqi Xu, Huatai Xu, Xiaohong Yan, Jun |
description | Whole-brain analysis of single-neuron morphology is crucial for unraveling the complex structure of the brain. However, large-scale neuron reconstruction from terabyte and even petabyte data of mammalian brains generated by state-of-the-art light microscopy is a daunting task. Here, we developed ‘Gapr’ (Gapr accelerates projectome reconstruction) that streamlines deep learning-based automatic reconstruction, ‘automatic proofreading’ that reduces human workloads at high-confidence sites, and high-throughput collaborative proofreading by crowd users through the Internet. Furthermore, Gapr offers a seamless user interface that ensures high proofreading speed per annotator, on-demand conversion for handling large datasets, flexible workflows tailored to diverse datasets and rigorous error tracking for quality control. Finally, we demonstrated Gapr’s efficacy by reconstructing over 4,000 neurons in mouse brains, revealing the morphological diversity in cortical interneurons and hypothalamic neurons. Here, we present Gapr as a solution for large-scale single-neuron reconstruction projects.
Gapr is an efficient platform for reconstructing neurons in large-scale light microscopy datasets. It enables various proofreading modes as well as collaboration among many annotators. |
doi_str_mv | 10.1038/s41592-024-02345-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075701387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075701387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-5faf3f12daff777d11cd8739ccd838778c3ea5976a4aecb421478e2ce49bcc2f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlms9m9yRStAoFL3oO2eykbNluarIr2F9vdFsFDx6GGcgzb4YHoXNKrinh-U0UVBYMEyZScSHx9gCNqRQ5VpTIw_1MCjpCJzGuCOFcMHmMRjwvppQpNUa3c7MJmfMha0xYAo7WNJBZ3zSm9MF09TtksW6XDeAW-uDbLID1bexCb7vat6foyJkmwtmuT9Drw_3L7BEvnudPs7sFtkxOOyydcdxRVhnnlFIVpbbKFS9sajxXKrccjCzU1AgDthSMCpUDsyCK0lrm-ARdDbmb4N96iJ1e19FCOrMF30fNiZKK0JSV0Ms_6Mr3oU3XaU6pZFwVgieKDZQNPsYATm9CvTbhQ1Oiv_TqQa9OevW3Xr1NSxe76L5cQ_WzsveZAD4AMT21Swi_f_8T-wnFdoZy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115237943</pqid></control><display><type>article</type><title>Gapr for large-scale collaborative single-neuron reconstruction</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Gou, Lingfeng ; Wang, Yanzhi ; Gao, Le ; Zhong, Yiting ; Xie, Lucheng ; Wang, Haifang ; Zha, Xi ; Shao, Yinqi ; Xu, Huatai ; Xu, Xiaohong ; Yan, Jun</creator><creatorcontrib>Gou, Lingfeng ; Wang, Yanzhi ; Gao, Le ; Zhong, Yiting ; Xie, Lucheng ; Wang, Haifang ; Zha, Xi ; Shao, Yinqi ; Xu, Huatai ; Xu, Xiaohong ; Yan, Jun</creatorcontrib><description>Whole-brain analysis of single-neuron morphology is crucial for unraveling the complex structure of the brain. However, large-scale neuron reconstruction from terabyte and even petabyte data of mammalian brains generated by state-of-the-art light microscopy is a daunting task. Here, we developed ‘Gapr’ (Gapr accelerates projectome reconstruction) that streamlines deep learning-based automatic reconstruction, ‘automatic proofreading’ that reduces human workloads at high-confidence sites, and high-throughput collaborative proofreading by crowd users through the Internet. Furthermore, Gapr offers a seamless user interface that ensures high proofreading speed per annotator, on-demand conversion for handling large datasets, flexible workflows tailored to diverse datasets and rigorous error tracking for quality control. Finally, we demonstrated Gapr’s efficacy by reconstructing over 4,000 neurons in mouse brains, revealing the morphological diversity in cortical interneurons and hypothalamic neurons. Here, we present Gapr as a solution for large-scale single-neuron reconstruction projects.
Gapr is an efficient platform for reconstructing neurons in large-scale light microscopy datasets. It enables various proofreading modes as well as collaboration among many annotators.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02345-z</identifier><identifier>PMID: 38961277</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/114/1564 ; 631/114/794 ; Animals ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Brain ; Brain - cytology ; Collaboration ; Datasets ; Deep Learning ; Editing ; Humans ; Hypothalamus ; Image Processing, Computer-Assisted - methods ; Interneurons ; Life Sciences ; Light microscopy ; Mice ; Microscopy ; Morphology ; Neurons ; Neurons - cytology ; Optical microscopy ; Proteomics ; Quality control ; Reconstruction ; Single-Cell Analysis - methods ; Software</subject><ispartof>Nature methods, 2024-10, Vol.21 (10), p.1926-1935</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-5faf3f12daff777d11cd8739ccd838778c3ea5976a4aecb421478e2ce49bcc2f3</cites><orcidid>0000-0002-0424-7612 ; 0000-0002-0405-0502 ; 0000-0002-1113-0455 ; 0000-0002-9952-9443 ; 0000-0002-2447-3529 ; 0000-0003-0271-5424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-024-02345-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-024-02345-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38961277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Lingfeng</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Gao, Le</creatorcontrib><creatorcontrib>Zhong, Yiting</creatorcontrib><creatorcontrib>Xie, Lucheng</creatorcontrib><creatorcontrib>Wang, Haifang</creatorcontrib><creatorcontrib>Zha, Xi</creatorcontrib><creatorcontrib>Shao, Yinqi</creatorcontrib><creatorcontrib>Xu, Huatai</creatorcontrib><creatorcontrib>Xu, Xiaohong</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><title>Gapr for large-scale collaborative single-neuron reconstruction</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Whole-brain analysis of single-neuron morphology is crucial for unraveling the complex structure of the brain. However, large-scale neuron reconstruction from terabyte and even petabyte data of mammalian brains generated by state-of-the-art light microscopy is a daunting task. Here, we developed ‘Gapr’ (Gapr accelerates projectome reconstruction) that streamlines deep learning-based automatic reconstruction, ‘automatic proofreading’ that reduces human workloads at high-confidence sites, and high-throughput collaborative proofreading by crowd users through the Internet. Furthermore, Gapr offers a seamless user interface that ensures high proofreading speed per annotator, on-demand conversion for handling large datasets, flexible workflows tailored to diverse datasets and rigorous error tracking for quality control. Finally, we demonstrated Gapr’s efficacy by reconstructing over 4,000 neurons in mouse brains, revealing the morphological diversity in cortical interneurons and hypothalamic neurons. Here, we present Gapr as a solution for large-scale single-neuron reconstruction projects.
Gapr is an efficient platform for reconstructing neurons in large-scale light microscopy datasets. It enables various proofreading modes as well as collaboration among many annotators.</description><subject>631/114/1305</subject><subject>631/114/1564</subject><subject>631/114/794</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Collaboration</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Editing</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Interneurons</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Optical microscopy</subject><subject>Proteomics</subject><subject>Quality control</subject><subject>Reconstruction</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlms9m9yRStAoFL3oO2eykbNluarIr2F9vdFsFDx6GGcgzb4YHoXNKrinh-U0UVBYMEyZScSHx9gCNqRQ5VpTIw_1MCjpCJzGuCOFcMHmMRjwvppQpNUa3c7MJmfMha0xYAo7WNJBZ3zSm9MF09TtksW6XDeAW-uDbLID1bexCb7vat6foyJkmwtmuT9Drw_3L7BEvnudPs7sFtkxOOyydcdxRVhnnlFIVpbbKFS9sajxXKrccjCzU1AgDthSMCpUDsyCK0lrm-ARdDbmb4N96iJ1e19FCOrMF30fNiZKK0JSV0Ms_6Mr3oU3XaU6pZFwVgieKDZQNPsYATm9CvTbhQ1Oiv_TqQa9OevW3Xr1NSxe76L5cQ_WzsveZAD4AMT21Swi_f_8T-wnFdoZy</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gou, Lingfeng</creator><creator>Wang, Yanzhi</creator><creator>Gao, Le</creator><creator>Zhong, Yiting</creator><creator>Xie, Lucheng</creator><creator>Wang, Haifang</creator><creator>Zha, Xi</creator><creator>Shao, Yinqi</creator><creator>Xu, Huatai</creator><creator>Xu, Xiaohong</creator><creator>Yan, Jun</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0424-7612</orcidid><orcidid>https://orcid.org/0000-0002-0405-0502</orcidid><orcidid>https://orcid.org/0000-0002-1113-0455</orcidid><orcidid>https://orcid.org/0000-0002-9952-9443</orcidid><orcidid>https://orcid.org/0000-0002-2447-3529</orcidid><orcidid>https://orcid.org/0000-0003-0271-5424</orcidid></search><sort><creationdate>20241001</creationdate><title>Gapr for large-scale collaborative single-neuron reconstruction</title><author>Gou, Lingfeng ; Wang, Yanzhi ; Gao, Le ; Zhong, Yiting ; Xie, Lucheng ; Wang, Haifang ; Zha, Xi ; Shao, Yinqi ; Xu, Huatai ; Xu, Xiaohong ; Yan, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-5faf3f12daff777d11cd8739ccd838778c3ea5976a4aecb421478e2ce49bcc2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/1305</topic><topic>631/114/1564</topic><topic>631/114/794</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Collaboration</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Editing</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Interneurons</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Optical microscopy</topic><topic>Proteomics</topic><topic>Quality control</topic><topic>Reconstruction</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Lingfeng</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Gao, Le</creatorcontrib><creatorcontrib>Zhong, Yiting</creatorcontrib><creatorcontrib>Xie, Lucheng</creatorcontrib><creatorcontrib>Wang, Haifang</creatorcontrib><creatorcontrib>Zha, Xi</creatorcontrib><creatorcontrib>Shao, Yinqi</creatorcontrib><creatorcontrib>Xu, Huatai</creatorcontrib><creatorcontrib>Xu, Xiaohong</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Lingfeng</au><au>Wang, Yanzhi</au><au>Gao, Le</au><au>Zhong, Yiting</au><au>Xie, Lucheng</au><au>Wang, Haifang</au><au>Zha, Xi</au><au>Shao, Yinqi</au><au>Xu, Huatai</au><au>Xu, Xiaohong</au><au>Yan, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gapr for large-scale collaborative single-neuron reconstruction</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>21</volume><issue>10</issue><spage>1926</spage><epage>1935</epage><pages>1926-1935</pages><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Whole-brain analysis of single-neuron morphology is crucial for unraveling the complex structure of the brain. However, large-scale neuron reconstruction from terabyte and even petabyte data of mammalian brains generated by state-of-the-art light microscopy is a daunting task. Here, we developed ‘Gapr’ (Gapr accelerates projectome reconstruction) that streamlines deep learning-based automatic reconstruction, ‘automatic proofreading’ that reduces human workloads at high-confidence sites, and high-throughput collaborative proofreading by crowd users through the Internet. Furthermore, Gapr offers a seamless user interface that ensures high proofreading speed per annotator, on-demand conversion for handling large datasets, flexible workflows tailored to diverse datasets and rigorous error tracking for quality control. Finally, we demonstrated Gapr’s efficacy by reconstructing over 4,000 neurons in mouse brains, revealing the morphological diversity in cortical interneurons and hypothalamic neurons. Here, we present Gapr as a solution for large-scale single-neuron reconstruction projects.
Gapr is an efficient platform for reconstructing neurons in large-scale light microscopy datasets. It enables various proofreading modes as well as collaboration among many annotators.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38961277</pmid><doi>10.1038/s41592-024-02345-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0424-7612</orcidid><orcidid>https://orcid.org/0000-0002-0405-0502</orcidid><orcidid>https://orcid.org/0000-0002-1113-0455</orcidid><orcidid>https://orcid.org/0000-0002-9952-9443</orcidid><orcidid>https://orcid.org/0000-0002-2447-3529</orcidid><orcidid>https://orcid.org/0000-0003-0271-5424</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2024-10, Vol.21 (10), p.1926-1935 |
issn | 1548-7091 1548-7105 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_3075701387 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/114/1305 631/114/1564 631/114/794 Animals Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Brain Brain - cytology Collaboration Datasets Deep Learning Editing Humans Hypothalamus Image Processing, Computer-Assisted - methods Interneurons Life Sciences Light microscopy Mice Microscopy Morphology Neurons Neurons - cytology Optical microscopy Proteomics Quality control Reconstruction Single-Cell Analysis - methods Software |
title | Gapr for large-scale collaborative single-neuron reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gapr%20for%20large-scale%20collaborative%20single-neuron%20reconstruction&rft.jtitle=Nature%20methods&rft.au=Gou,%20Lingfeng&rft.date=2024-10-01&rft.volume=21&rft.issue=10&rft.spage=1926&rft.epage=1935&rft.pages=1926-1935&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02345-z&rft_dat=%3Cproquest_cross%3E3075701387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115237943&rft_id=info:pmid/38961277&rfr_iscdi=true |