Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy

Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-09, Vol.30 (51), p.e202402254-n/a
Hauptverfasser: Georges, Tristan, Ovens, Jeffrey S., Bryce, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page e202402254
container_title Chemistry : a European journal
container_volume 30
creator Georges, Tristan
Ovens, Jeffrey S.
Bryce, David L.
description Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif. The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.
doi_str_mv 10.1002/chem.202402254
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075379158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075379158</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2364-743370648374168ecbd111c0241cb5663d50edcc7ce0beece37212d3e539ffe23</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EEkNhy9oSGxZN8U9iT5YwGmilDq0IrC3HvmldeewQO0XTFY_Atq_XJ6lHg7ro6upK373n6ByE3lNyQglhn8w1bE8YYTVhrKlfoAVtGK24FM1LtCBtLSvR8PY1epPSDSGkFZwv0P3ag8lTTFlnZ3A3T4M2gC9jhpCd9gnrYPHqWnsTryA8_P33JQbrwhXexOyGhONQjvqUXZ4zWMyO6THfUxDuYgIPQVun76KHhC-n2Bfk1mksZQe4i97ZwnZFG_D3zQ_cjQczJo67t-jVUPTh3f95hH59Xf9cnVbnF9_OVp_Pq5FxUVey5lwSUS-5rKlYguktpdSUGKjpGyG4bQhYY6QB0gMY4JJRZjmULIYBGD9CHw9_xyn-niFltXXJgPc6QJyT4kQ2XLa0WRb0wzP0Js5TKO4UL6KsXoqWF6o9UH-ch50aJ7fV005RovY1qX1N6qkmtTpdb542_ghHqoy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111248693</pqid></control><display><type>article</type><title>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Georges, Tristan ; Ovens, Jeffrey S. ; Bryce, David L.</creator><creatorcontrib>Georges, Tristan ; Ovens, Jeffrey S. ; Bryce, David L.</creatorcontrib><description>Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif. The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202402254</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzoselenadiazoles ; Binding ; Bonding strength ; Catalysis ; Chalcogen bonds ; Chemical bonds ; Chemical equilibrium ; Crystal engineering ; Electrostatic potential ; Electrostatic properties ; Halogens ; Magnetic resonance spectroscopy ; Molecular electrostatic potential ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Selenium ; Solid-state NMR ; Solid-state structures ; Spectroscopy ; Spectrum analysis ; Substituent effects ; Tensors ; X-ray diffraction</subject><ispartof>Chemistry : a European journal, 2024-09, Vol.30 (51), p.e202402254-n/a</ispartof><rights>2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9989-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202402254$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202402254$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Georges, Tristan</creatorcontrib><creatorcontrib>Ovens, Jeffrey S.</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><title>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</title><title>Chemistry : a European journal</title><description>Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif. The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.</description><subject>Benzoselenadiazoles</subject><subject>Binding</subject><subject>Bonding strength</subject><subject>Catalysis</subject><subject>Chalcogen bonds</subject><subject>Chemical bonds</subject><subject>Chemical equilibrium</subject><subject>Crystal engineering</subject><subject>Electrostatic potential</subject><subject>Electrostatic properties</subject><subject>Halogens</subject><subject>Magnetic resonance spectroscopy</subject><subject>Molecular electrostatic potential</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Selenium</subject><subject>Solid-state NMR</subject><subject>Solid-state structures</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substituent effects</subject><subject>Tensors</subject><subject>X-ray diffraction</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkc1u1DAUhS0EEkNhy9oSGxZN8U9iT5YwGmilDq0IrC3HvmldeewQO0XTFY_Atq_XJ6lHg7ro6upK373n6ByE3lNyQglhn8w1bE8YYTVhrKlfoAVtGK24FM1LtCBtLSvR8PY1epPSDSGkFZwv0P3ag8lTTFlnZ3A3T4M2gC9jhpCd9gnrYPHqWnsTryA8_P33JQbrwhXexOyGhONQjvqUXZ4zWMyO6THfUxDuYgIPQVun76KHhC-n2Bfk1mksZQe4i97ZwnZFG_D3zQ_cjQczJo67t-jVUPTh3f95hH59Xf9cnVbnF9_OVp_Pq5FxUVey5lwSUS-5rKlYguktpdSUGKjpGyG4bQhYY6QB0gMY4JJRZjmULIYBGD9CHw9_xyn-niFltXXJgPc6QJyT4kQ2XLa0WRb0wzP0Js5TKO4UL6KsXoqWF6o9UH-ch50aJ7fV005RovY1qX1N6qkmtTpdb542_ghHqoy0</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Georges, Tristan</creator><creator>Ovens, Jeffrey S.</creator><creator>Bryce, David L.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid></search><sort><creationdate>20240911</creationdate><title>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</title><author>Georges, Tristan ; Ovens, Jeffrey S. ; Bryce, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2364-743370648374168ecbd111c0241cb5663d50edcc7ce0beece37212d3e539ffe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzoselenadiazoles</topic><topic>Binding</topic><topic>Bonding strength</topic><topic>Catalysis</topic><topic>Chalcogen bonds</topic><topic>Chemical bonds</topic><topic>Chemical equilibrium</topic><topic>Crystal engineering</topic><topic>Electrostatic potential</topic><topic>Electrostatic properties</topic><topic>Halogens</topic><topic>Magnetic resonance spectroscopy</topic><topic>Molecular electrostatic potential</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Selenium</topic><topic>Solid-state NMR</topic><topic>Solid-state structures</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substituent effects</topic><topic>Tensors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georges, Tristan</creatorcontrib><creatorcontrib>Ovens, Jeffrey S.</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georges, Tristan</au><au>Ovens, Jeffrey S.</au><au>Bryce, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</atitle><jtitle>Chemistry : a European journal</jtitle><date>2024-09-11</date><risdate>2024</risdate><volume>30</volume><issue>51</issue><spage>e202402254</spage><epage>n/a</epage><pages>e202402254-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif. The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202402254</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2024-09, Vol.30 (51), p.e202402254-n/a
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_3075379158
source Wiley Online Library Journals Frontfile Complete
subjects Benzoselenadiazoles
Binding
Bonding strength
Catalysis
Chalcogen bonds
Chemical bonds
Chemical equilibrium
Crystal engineering
Electrostatic potential
Electrostatic properties
Halogens
Magnetic resonance spectroscopy
Molecular electrostatic potential
NMR
NMR spectroscopy
Nuclear magnetic resonance
Selenium
Solid-state NMR
Solid-state structures
Spectroscopy
Spectrum analysis
Substituent effects
Tensors
X-ray diffraction
title Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Surface%20Potentials%20and%20Chalcogen%E2%80%90Bonding%20Motifs%20of%20Substituted%202,1,3%E2%80%90Benzoselenadiazoles%20Probed%20via%2077Se%20Solid%E2%80%90State%20NMR%20Spectroscopy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Georges,%20Tristan&rft.date=2024-09-11&rft.volume=30&rft.issue=51&rft.spage=e202402254&rft.epage=n/a&rft.pages=e202402254-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202402254&rft_dat=%3Cproquest_wiley%3E3075379158%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111248693&rft_id=info:pmid/&rfr_iscdi=true