Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy
Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. Ho...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2024-09, Vol.30 (51), p.e202402254-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | e202402254 |
container_title | Chemistry : a European journal |
container_volume | 30 |
creator | Georges, Tristan Ovens, Jeffrey S. Bryce, David L. |
description | Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.
The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs. |
doi_str_mv | 10.1002/chem.202402254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075379158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075379158</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2364-743370648374168ecbd111c0241cb5663d50edcc7ce0beece37212d3e539ffe23</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EEkNhy9oSGxZN8U9iT5YwGmilDq0IrC3HvmldeewQO0XTFY_Atq_XJ6lHg7ro6upK373n6ByE3lNyQglhn8w1bE8YYTVhrKlfoAVtGK24FM1LtCBtLSvR8PY1epPSDSGkFZwv0P3ag8lTTFlnZ3A3T4M2gC9jhpCd9gnrYPHqWnsTryA8_P33JQbrwhXexOyGhONQjvqUXZ4zWMyO6THfUxDuYgIPQVun76KHhC-n2Bfk1mksZQe4i97ZwnZFG_D3zQ_cjQczJo67t-jVUPTh3f95hH59Xf9cnVbnF9_OVp_Pq5FxUVey5lwSUS-5rKlYguktpdSUGKjpGyG4bQhYY6QB0gMY4JJRZjmULIYBGD9CHw9_xyn-niFltXXJgPc6QJyT4kQ2XLa0WRb0wzP0Js5TKO4UL6KsXoqWF6o9UH-ch50aJ7fV005RovY1qX1N6qkmtTpdb542_ghHqoy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111248693</pqid></control><display><type>article</type><title>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Georges, Tristan ; Ovens, Jeffrey S. ; Bryce, David L.</creator><creatorcontrib>Georges, Tristan ; Ovens, Jeffrey S. ; Bryce, David L.</creatorcontrib><description>Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.
The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202402254</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzoselenadiazoles ; Binding ; Bonding strength ; Catalysis ; Chalcogen bonds ; Chemical bonds ; Chemical equilibrium ; Crystal engineering ; Electrostatic potential ; Electrostatic properties ; Halogens ; Magnetic resonance spectroscopy ; Molecular electrostatic potential ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Selenium ; Solid-state NMR ; Solid-state structures ; Spectroscopy ; Spectrum analysis ; Substituent effects ; Tensors ; X-ray diffraction</subject><ispartof>Chemistry : a European journal, 2024-09, Vol.30 (51), p.e202402254-n/a</ispartof><rights>2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9989-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202402254$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202402254$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Georges, Tristan</creatorcontrib><creatorcontrib>Ovens, Jeffrey S.</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><title>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</title><title>Chemistry : a European journal</title><description>Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.
The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.</description><subject>Benzoselenadiazoles</subject><subject>Binding</subject><subject>Bonding strength</subject><subject>Catalysis</subject><subject>Chalcogen bonds</subject><subject>Chemical bonds</subject><subject>Chemical equilibrium</subject><subject>Crystal engineering</subject><subject>Electrostatic potential</subject><subject>Electrostatic properties</subject><subject>Halogens</subject><subject>Magnetic resonance spectroscopy</subject><subject>Molecular electrostatic potential</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Selenium</subject><subject>Solid-state NMR</subject><subject>Solid-state structures</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substituent effects</subject><subject>Tensors</subject><subject>X-ray diffraction</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkc1u1DAUhS0EEkNhy9oSGxZN8U9iT5YwGmilDq0IrC3HvmldeewQO0XTFY_Atq_XJ6lHg7ro6upK373n6ByE3lNyQglhn8w1bE8YYTVhrKlfoAVtGK24FM1LtCBtLSvR8PY1epPSDSGkFZwv0P3ag8lTTFlnZ3A3T4M2gC9jhpCd9gnrYPHqWnsTryA8_P33JQbrwhXexOyGhONQjvqUXZ4zWMyO6THfUxDuYgIPQVun76KHhC-n2Bfk1mksZQe4i97ZwnZFG_D3zQ_cjQczJo67t-jVUPTh3f95hH59Xf9cnVbnF9_OVp_Pq5FxUVey5lwSUS-5rKlYguktpdSUGKjpGyG4bQhYY6QB0gMY4JJRZjmULIYBGD9CHw9_xyn-niFltXXJgPc6QJyT4kQ2XLa0WRb0wzP0Js5TKO4UL6KsXoqWF6o9UH-ch50aJ7fV005RovY1qX1N6qkmtTpdb542_ghHqoy0</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Georges, Tristan</creator><creator>Ovens, Jeffrey S.</creator><creator>Bryce, David L.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid></search><sort><creationdate>20240911</creationdate><title>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</title><author>Georges, Tristan ; Ovens, Jeffrey S. ; Bryce, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2364-743370648374168ecbd111c0241cb5663d50edcc7ce0beece37212d3e539ffe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzoselenadiazoles</topic><topic>Binding</topic><topic>Bonding strength</topic><topic>Catalysis</topic><topic>Chalcogen bonds</topic><topic>Chemical bonds</topic><topic>Chemical equilibrium</topic><topic>Crystal engineering</topic><topic>Electrostatic potential</topic><topic>Electrostatic properties</topic><topic>Halogens</topic><topic>Magnetic resonance spectroscopy</topic><topic>Molecular electrostatic potential</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Selenium</topic><topic>Solid-state NMR</topic><topic>Solid-state structures</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substituent effects</topic><topic>Tensors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georges, Tristan</creatorcontrib><creatorcontrib>Ovens, Jeffrey S.</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georges, Tristan</au><au>Ovens, Jeffrey S.</au><au>Bryce, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy</atitle><jtitle>Chemistry : a European journal</jtitle><date>2024-09-11</date><risdate>2024</risdate><volume>30</volume><issue>51</issue><spage>e202402254</spage><epage>n/a</epage><pages>e202402254-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Chalcogen bonds (ChB) are moderately strong, directional, and specific non‐covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ‐holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self‐complementary ChB networks of 2,1,3‐benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ‐holes on selenium are largely influenced by the electron‐withdrawing character of these substituents. Structural analyses via X‐ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6‐dimethyl‐2,1,3‐benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid‐state magic‐angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self‐complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ‐holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.
The influence of substituents on the self‐complementary chalcogen bonding of 2,1,3‐benzoselenadiazoles is investigated through solid‐state and computational methods. 77Se solid‐state NMR is found to be a sensitive probe of molecular surface potentials and chalcogen bond motifs.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202402254</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2024-09, Vol.30 (51), p.e202402254-n/a |
issn | 0947-6539 1521-3765 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_3075379158 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Benzoselenadiazoles Binding Bonding strength Catalysis Chalcogen bonds Chemical bonds Chemical equilibrium Crystal engineering Electrostatic potential Electrostatic properties Halogens Magnetic resonance spectroscopy Molecular electrostatic potential NMR NMR spectroscopy Nuclear magnetic resonance Selenium Solid-state NMR Solid-state structures Spectroscopy Spectrum analysis Substituent effects Tensors X-ray diffraction |
title | Electrostatic Surface Potentials and Chalcogen‐Bonding Motifs of Substituted 2,1,3‐Benzoselenadiazoles Probed via 77Se Solid‐State NMR Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Surface%20Potentials%20and%20Chalcogen%E2%80%90Bonding%20Motifs%20of%20Substituted%202,1,3%E2%80%90Benzoselenadiazoles%20Probed%20via%2077Se%20Solid%E2%80%90State%20NMR%20Spectroscopy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Georges,%20Tristan&rft.date=2024-09-11&rft.volume=30&rft.issue=51&rft.spage=e202402254&rft.epage=n/a&rft.pages=e202402254-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202402254&rft_dat=%3Cproquest_wiley%3E3075379158%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111248693&rft_id=info:pmid/&rfr_iscdi=true |