Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching

Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (44), p.e2404337-n/a
Hauptverfasser: Chahal, Sumit, Sahay, Trisha, Li, Zhixuan, Sharma, Raju Kumar, Kumari, Ekta, Bandyopadhyay, Arkamita, Kumari, Puja, Jyoti Ray, Soumya, Vinu, Ajayan, Kumar, Prashant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e2404337
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Chahal, Sumit
Sahay, Trisha
Li, Zhixuan
Sharma, Raju Kumar
Kumari, Ekta
Bandyopadhyay, Arkamita
Kumari, Puja
Jyoti Ray, Soumya
Vinu, Ajayan
Kumar, Prashant
description Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high‐purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few‐layered graphene sheets (200–12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ‐synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications. This paper presents a novel method for synthesizing graphene using microwave expansion followed by cryoquenching. The approach demonstrates improved scalability and efficiency, producing high‐purity graphene in a matter of minutes. Characterization techniques confirm the quality and structural properties of the synthesized material, highlighting its potential for various technological applications.
doi_str_mv 10.1002/smll.202404337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075378575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122904859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2987-951ce0ac8a7816de2a98a5f4a352177f6140cc744bdb6f6e5c38b38d74c7ab693</originalsourceid><addsrcrecordid>eNqFkc1uEzEURi0EoiWwZYkssWGT4L8Z28sqTQtSKoQKa8vjuUNdOfZgzzRk10fgGXkSJk0JEhs2tmWd7-jqfgi9pmRBCWHvyyaEBSNMEMG5fIJOaU35vFZMPz2-KTlBL0q5JYRTJuRzdMKVrhRR-hTdX2bb30AEfOctvvIup629A7z60dtYfIo4dfiB8QPgixRC2kKLmx1e5l36df_z8wjR3fj4DdvYYj8UfNb3wTs77MM-4lUAN-RUhunH4fOc-gADvt764SH2Ej3rbCjw6vGeoa8Xqy_LD_P1p8uPy7P13DGt5FxX1AGxTlmpaN0Cs1rZqhOWV4xK2dVUEOekEE3b1F0NleOq4aqVwknb1JrP0LuDt8_p-whlMBtfHIRgI6SxGE5kxaWqpnOG3v6D3qYxx2k6My2QaSJUtRcuDtS0slIydKbPfmPzzlBi9t2YfTfm2M0UePOoHZsNtEf8TxkToA_A1gfY_Udnrq_W67_y32NRnck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122904859</pqid></control><display><type>article</type><title>Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chahal, Sumit ; Sahay, Trisha ; Li, Zhixuan ; Sharma, Raju Kumar ; Kumari, Ekta ; Bandyopadhyay, Arkamita ; Kumari, Puja ; Jyoti Ray, Soumya ; Vinu, Ajayan ; Kumar, Prashant</creator><creatorcontrib>Chahal, Sumit ; Sahay, Trisha ; Li, Zhixuan ; Sharma, Raju Kumar ; Kumari, Ekta ; Bandyopadhyay, Arkamita ; Kumari, Puja ; Jyoti Ray, Soumya ; Vinu, Ajayan ; Kumar, Prashant</creatorcontrib><description>Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high‐purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few‐layered graphene sheets (200–12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ‐synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications. This paper presents a novel method for synthesizing graphene using microwave expansion followed by cryoquenching. The approach demonstrates improved scalability and efficiency, producing high‐purity graphene in a matter of minutes. Characterization techniques confirm the quality and structural properties of the synthesized material, highlighting its potential for various technological applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404337</identifier><identifier>PMID: 38958089</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; cryoexfoliation ; Droplets ; electrostatic droplet switching ; Graphene ; Graphite ; Liquid nitrogen ; microwave ; Modulus of elasticity ; Molecular dynamics ; Purity ; Quenching ; Thermal conductivity ; Thermal stress ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (44), p.e2404337-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2987-951ce0ac8a7816de2a98a5f4a352177f6140cc744bdb6f6e5c38b38d74c7ab693</cites><orcidid>0000-0002-7508-251X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404337$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404337$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38958089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chahal, Sumit</creatorcontrib><creatorcontrib>Sahay, Trisha</creatorcontrib><creatorcontrib>Li, Zhixuan</creatorcontrib><creatorcontrib>Sharma, Raju Kumar</creatorcontrib><creatorcontrib>Kumari, Ekta</creatorcontrib><creatorcontrib>Bandyopadhyay, Arkamita</creatorcontrib><creatorcontrib>Kumari, Puja</creatorcontrib><creatorcontrib>Jyoti Ray, Soumya</creatorcontrib><creatorcontrib>Vinu, Ajayan</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><title>Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high‐purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few‐layered graphene sheets (200–12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ‐synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications. This paper presents a novel method for synthesizing graphene using microwave expansion followed by cryoquenching. The approach demonstrates improved scalability and efficiency, producing high‐purity graphene in a matter of minutes. Characterization techniques confirm the quality and structural properties of the synthesized material, highlighting its potential for various technological applications.</description><subject>Chemical synthesis</subject><subject>cryoexfoliation</subject><subject>Droplets</subject><subject>electrostatic droplet switching</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Liquid nitrogen</subject><subject>microwave</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Purity</subject><subject>Quenching</subject><subject>Thermal conductivity</subject><subject>Thermal stress</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1uEzEURi0EoiWwZYkssWGT4L8Z28sqTQtSKoQKa8vjuUNdOfZgzzRk10fgGXkSJk0JEhs2tmWd7-jqfgi9pmRBCWHvyyaEBSNMEMG5fIJOaU35vFZMPz2-KTlBL0q5JYRTJuRzdMKVrhRR-hTdX2bb30AEfOctvvIup629A7z60dtYfIo4dfiB8QPgixRC2kKLmx1e5l36df_z8wjR3fj4DdvYYj8UfNb3wTs77MM-4lUAN-RUhunH4fOc-gADvt764SH2Ej3rbCjw6vGeoa8Xqy_LD_P1p8uPy7P13DGt5FxX1AGxTlmpaN0Cs1rZqhOWV4xK2dVUEOekEE3b1F0NleOq4aqVwknb1JrP0LuDt8_p-whlMBtfHIRgI6SxGE5kxaWqpnOG3v6D3qYxx2k6My2QaSJUtRcuDtS0slIydKbPfmPzzlBi9t2YfTfm2M0UePOoHZsNtEf8TxkToA_A1gfY_Udnrq_W67_y32NRnck</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chahal, Sumit</creator><creator>Sahay, Trisha</creator><creator>Li, Zhixuan</creator><creator>Sharma, Raju Kumar</creator><creator>Kumari, Ekta</creator><creator>Bandyopadhyay, Arkamita</creator><creator>Kumari, Puja</creator><creator>Jyoti Ray, Soumya</creator><creator>Vinu, Ajayan</creator><creator>Kumar, Prashant</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7508-251X</orcidid></search><sort><creationdate>20241101</creationdate><title>Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching</title><author>Chahal, Sumit ; Sahay, Trisha ; Li, Zhixuan ; Sharma, Raju Kumar ; Kumari, Ekta ; Bandyopadhyay, Arkamita ; Kumari, Puja ; Jyoti Ray, Soumya ; Vinu, Ajayan ; Kumar, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2987-951ce0ac8a7816de2a98a5f4a352177f6140cc744bdb6f6e5c38b38d74c7ab693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical synthesis</topic><topic>cryoexfoliation</topic><topic>Droplets</topic><topic>electrostatic droplet switching</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Liquid nitrogen</topic><topic>microwave</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Purity</topic><topic>Quenching</topic><topic>Thermal conductivity</topic><topic>Thermal stress</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chahal, Sumit</creatorcontrib><creatorcontrib>Sahay, Trisha</creatorcontrib><creatorcontrib>Li, Zhixuan</creatorcontrib><creatorcontrib>Sharma, Raju Kumar</creatorcontrib><creatorcontrib>Kumari, Ekta</creatorcontrib><creatorcontrib>Bandyopadhyay, Arkamita</creatorcontrib><creatorcontrib>Kumari, Puja</creatorcontrib><creatorcontrib>Jyoti Ray, Soumya</creatorcontrib><creatorcontrib>Vinu, Ajayan</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chahal, Sumit</au><au>Sahay, Trisha</au><au>Li, Zhixuan</au><au>Sharma, Raju Kumar</au><au>Kumari, Ekta</au><au>Bandyopadhyay, Arkamita</au><au>Kumari, Puja</au><au>Jyoti Ray, Soumya</au><au>Vinu, Ajayan</au><au>Kumar, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>44</issue><spage>e2404337</spage><epage>n/a</epage><pages>e2404337-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high‐purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few‐layered graphene sheets (200–12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ‐synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications. This paper presents a novel method for synthesizing graphene using microwave expansion followed by cryoquenching. The approach demonstrates improved scalability and efficiency, producing high‐purity graphene in a matter of minutes. Characterization techniques confirm the quality and structural properties of the synthesized material, highlighting its potential for various technological applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38958089</pmid><doi>10.1002/smll.202404337</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7508-251X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (44), p.e2404337-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3075378575
source Wiley Online Library Journals Frontfile Complete
subjects Chemical synthesis
cryoexfoliation
Droplets
electrostatic droplet switching
Graphene
Graphite
Liquid nitrogen
microwave
Modulus of elasticity
Molecular dynamics
Purity
Quenching
Thermal conductivity
Thermal stress
Two dimensional materials
title Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20via%20Microwave%20Expansion%20of%20Graphite%20Followed%20by%20Cryo%E2%80%90Quenching%20and%20its%20Application%20in%20Electrostatic%20Droplet%20Switching&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chahal,%20Sumit&rft.date=2024-11-01&rft.volume=20&rft.issue=44&rft.spage=e2404337&rft.epage=n/a&rft.pages=e2404337-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404337&rft_dat=%3Cproquest_cross%3E3122904859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122904859&rft_id=info:pmid/38958089&rfr_iscdi=true