Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures

Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, Vol.63 (43), p.e202410908-n/a
Hauptverfasser: Chen, Wenting, Liu, Pei, Sun, Xia, Xiong, Biao, Cui, Huahua, Zhao, Zhenghong, Ning, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page e202410908
container_title Angewandte Chemie International Edition
container_volume 63
creator Chen, Wenting
Liu, Pei
Sun, Xia
Xiong, Biao
Cui, Huahua
Zhao, Zhenghong
Ning, Yin
description Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization. This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.
doi_str_mv 10.1002/anie.202410908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075372716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075372716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2588-3dd08c575c32fb994a6c5e2b108c3f7c669b92cf502fe59a878b903efd0afd4d3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALgWgZ2LJEltiwyeBLLvayiko7UuksCuvIcU7AlccOttMqOx6BN-DdeBIcTSkSG1Y-sj__PvJB6DUlW0oIe6-cgS0jrKREEvEEndKK0YI3DX-a65LzohEVPUEvYrzNXghSP0cnXMiqLIU8RT9vJpWMj2BBJ3MHeK-1naPxDvsRt37ydjlAwNfK-UmFZLSFiO9N-mocbpXVJgFuwxKTshFfgIOgUhb78CW3pn99_7Fz_ljjy6UPZsAfMwhm5WtMfsOl4K2FAe9cPnHK4psUZp3mAPElejZmCq8e1g36_OH8U3tZXO0vdu3ZVaFZJUTBh4EIXTWV5mzspSxVrStgPc27fGx0XcteMj1WhI1QSSUa0UvCYRyIGody4Bv07pg7Bf9thpi6g4karFUO_Bw7TpqKN6yhdaZv_6G3fl7bzorSmmaTP36Dtkelg48xwNhNwRxUWDpKunV03Tq67nF0-cKbh9i5P8DwyP_MKgN5BPfGwvKfuO7senf-N_w3z76qrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116171614</pqid></control><display><type>article</type><title>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Wenting ; Liu, Pei ; Sun, Xia ; Xiong, Biao ; Cui, Huahua ; Zhao, Zhenghong ; Ning, Yin</creator><creatorcontrib>Chen, Wenting ; Liu, Pei ; Sun, Xia ; Xiong, Biao ; Cui, Huahua ; Zhao, Zhenghong ; Ning, Yin</creatorcontrib><description>Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization. This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202410908</identifier><identifier>PMID: 38954489</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; block copolymer ; Block copolymers ; Calcite ; Calcium carbonate ; Calcium ions ; composite crystal ; Crystal growth ; Crystal structure ; Crystals ; Electrostatic properties ; Materials science ; Mineralization ; Nanocomposites ; Nanoparticles ; Occlusion ; organic–inorganic hybrid materials ; polymerization-induced self-assembly ; Self-assembly ; Single crystals ; Spatial distribution ; spatioselective occlusion</subject><ispartof>Angewandte Chemie International Edition, 2024-10, Vol.63 (43), p.e202410908-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2588-3dd08c575c32fb994a6c5e2b108c3f7c669b92cf502fe59a878b903efd0afd4d3</cites><orcidid>0000-0003-1808-3513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202410908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202410908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wenting</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Sun, Xia</creatorcontrib><creatorcontrib>Xiong, Biao</creatorcontrib><creatorcontrib>Cui, Huahua</creatorcontrib><creatorcontrib>Zhao, Zhenghong</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><title>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization. This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.</description><subject>Additives</subject><subject>block copolymer</subject><subject>Block copolymers</subject><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>composite crystal</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electrostatic properties</subject><subject>Materials science</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Occlusion</subject><subject>organic–inorganic hybrid materials</subject><subject>polymerization-induced self-assembly</subject><subject>Self-assembly</subject><subject>Single crystals</subject><subject>Spatial distribution</subject><subject>spatioselective occlusion</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctu1DAUBmALgWgZ2LJEltiwyeBLLvayiko7UuksCuvIcU7AlccOttMqOx6BN-DdeBIcTSkSG1Y-sj__PvJB6DUlW0oIe6-cgS0jrKREEvEEndKK0YI3DX-a65LzohEVPUEvYrzNXghSP0cnXMiqLIU8RT9vJpWMj2BBJ3MHeK-1naPxDvsRt37ydjlAwNfK-UmFZLSFiO9N-mocbpXVJgFuwxKTshFfgIOgUhb78CW3pn99_7Fz_ljjy6UPZsAfMwhm5WtMfsOl4K2FAe9cPnHK4psUZp3mAPElejZmCq8e1g36_OH8U3tZXO0vdu3ZVaFZJUTBh4EIXTWV5mzspSxVrStgPc27fGx0XcteMj1WhI1QSSUa0UvCYRyIGody4Bv07pg7Bf9thpi6g4karFUO_Bw7TpqKN6yhdaZv_6G3fl7bzorSmmaTP36Dtkelg48xwNhNwRxUWDpKunV03Tq67nF0-cKbh9i5P8DwyP_MKgN5BPfGwvKfuO7senf-N_w3z76qrw</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Chen, Wenting</creator><creator>Liu, Pei</creator><creator>Sun, Xia</creator><creator>Xiong, Biao</creator><creator>Cui, Huahua</creator><creator>Zhao, Zhenghong</creator><creator>Ning, Yin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1808-3513</orcidid></search><sort><creationdate>20241021</creationdate><title>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</title><author>Chen, Wenting ; Liu, Pei ; Sun, Xia ; Xiong, Biao ; Cui, Huahua ; Zhao, Zhenghong ; Ning, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2588-3dd08c575c32fb994a6c5e2b108c3f7c669b92cf502fe59a878b903efd0afd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>block copolymer</topic><topic>Block copolymers</topic><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>composite crystal</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electrostatic properties</topic><topic>Materials science</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Occlusion</topic><topic>organic–inorganic hybrid materials</topic><topic>polymerization-induced self-assembly</topic><topic>Self-assembly</topic><topic>Single crystals</topic><topic>Spatial distribution</topic><topic>spatioselective occlusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenting</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Sun, Xia</creatorcontrib><creatorcontrib>Xiong, Biao</creatorcontrib><creatorcontrib>Cui, Huahua</creatorcontrib><creatorcontrib>Zhao, Zhenghong</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenting</au><au>Liu, Pei</au><au>Sun, Xia</au><au>Xiong, Biao</au><au>Cui, Huahua</au><au>Zhao, Zhenghong</au><au>Ning, Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-10-21</date><risdate>2024</risdate><volume>63</volume><issue>43</issue><spage>e202410908</spage><epage>n/a</epage><pages>e202410908-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization. This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38954489</pmid><doi>10.1002/anie.202410908</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-1808-3513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-10, Vol.63 (43), p.e202410908-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3075372716
source Wiley Online Library Journals Frontfile Complete
subjects Additives
block copolymer
Block copolymers
Calcite
Calcium carbonate
Calcium ions
composite crystal
Crystal growth
Crystal structure
Crystals
Electrostatic properties
Materials science
Mineralization
Nanocomposites
Nanoparticles
Occlusion
organic–inorganic hybrid materials
polymerization-induced self-assembly
Self-assembly
Single crystals
Spatial distribution
spatioselective occlusion
title Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatioselective%20Occlusion%20of%20Copolymer%20Nanoparticles%20within%20Calcite%20Crystals%20Generates%20Organic%E2%80%90Inorganic%20Hybrid%20Materials%20with%20Controlled%20Internal%20Structures&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chen,%20Wenting&rft.date=2024-10-21&rft.volume=63&rft.issue=43&rft.spage=e202410908&rft.epage=n/a&rft.pages=e202410908-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202410908&rft_dat=%3Cproquest_cross%3E3075372716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116171614&rft_id=info:pmid/38954489&rfr_iscdi=true