Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures
Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spati...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-10, Vol.63 (43), p.e202410908-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 43 |
container_start_page | e202410908 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Chen, Wenting Liu, Pei Sun, Xia Xiong, Biao Cui, Huahua Zhao, Zhenghong Ning, Yin |
description | Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.
This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals. |
doi_str_mv | 10.1002/anie.202410908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3075372716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075372716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2588-3dd08c575c32fb994a6c5e2b108c3f7c669b92cf502fe59a878b903efd0afd4d3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALgWgZ2LJEltiwyeBLLvayiko7UuksCuvIcU7AlccOttMqOx6BN-DdeBIcTSkSG1Y-sj__PvJB6DUlW0oIe6-cgS0jrKREEvEEndKK0YI3DX-a65LzohEVPUEvYrzNXghSP0cnXMiqLIU8RT9vJpWMj2BBJ3MHeK-1naPxDvsRt37ydjlAwNfK-UmFZLSFiO9N-mocbpXVJgFuwxKTshFfgIOgUhb78CW3pn99_7Fz_ljjy6UPZsAfMwhm5WtMfsOl4K2FAe9cPnHK4psUZp3mAPElejZmCq8e1g36_OH8U3tZXO0vdu3ZVaFZJUTBh4EIXTWV5mzspSxVrStgPc27fGx0XcteMj1WhI1QSSUa0UvCYRyIGody4Bv07pg7Bf9thpi6g4karFUO_Bw7TpqKN6yhdaZv_6G3fl7bzorSmmaTP36Dtkelg48xwNhNwRxUWDpKunV03Tq67nF0-cKbh9i5P8DwyP_MKgN5BPfGwvKfuO7senf-N_w3z76qrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116171614</pqid></control><display><type>article</type><title>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Wenting ; Liu, Pei ; Sun, Xia ; Xiong, Biao ; Cui, Huahua ; Zhao, Zhenghong ; Ning, Yin</creator><creatorcontrib>Chen, Wenting ; Liu, Pei ; Sun, Xia ; Xiong, Biao ; Cui, Huahua ; Zhao, Zhenghong ; Ning, Yin</creatorcontrib><description>Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.
This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202410908</identifier><identifier>PMID: 38954489</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; block copolymer ; Block copolymers ; Calcite ; Calcium carbonate ; Calcium ions ; composite crystal ; Crystal growth ; Crystal structure ; Crystals ; Electrostatic properties ; Materials science ; Mineralization ; Nanocomposites ; Nanoparticles ; Occlusion ; organic–inorganic hybrid materials ; polymerization-induced self-assembly ; Self-assembly ; Single crystals ; Spatial distribution ; spatioselective occlusion</subject><ispartof>Angewandte Chemie International Edition, 2024-10, Vol.63 (43), p.e202410908-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2588-3dd08c575c32fb994a6c5e2b108c3f7c669b92cf502fe59a878b903efd0afd4d3</cites><orcidid>0000-0003-1808-3513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202410908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202410908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wenting</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Sun, Xia</creatorcontrib><creatorcontrib>Xiong, Biao</creatorcontrib><creatorcontrib>Cui, Huahua</creatorcontrib><creatorcontrib>Zhao, Zhenghong</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><title>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.
This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.</description><subject>Additives</subject><subject>block copolymer</subject><subject>Block copolymers</subject><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>composite crystal</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electrostatic properties</subject><subject>Materials science</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Occlusion</subject><subject>organic–inorganic hybrid materials</subject><subject>polymerization-induced self-assembly</subject><subject>Self-assembly</subject><subject>Single crystals</subject><subject>Spatial distribution</subject><subject>spatioselective occlusion</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctu1DAUBmALgWgZ2LJEltiwyeBLLvayiko7UuksCuvIcU7AlccOttMqOx6BN-DdeBIcTSkSG1Y-sj__PvJB6DUlW0oIe6-cgS0jrKREEvEEndKK0YI3DX-a65LzohEVPUEvYrzNXghSP0cnXMiqLIU8RT9vJpWMj2BBJ3MHeK-1naPxDvsRt37ydjlAwNfK-UmFZLSFiO9N-mocbpXVJgFuwxKTshFfgIOgUhb78CW3pn99_7Fz_ljjy6UPZsAfMwhm5WtMfsOl4K2FAe9cPnHK4psUZp3mAPElejZmCq8e1g36_OH8U3tZXO0vdu3ZVaFZJUTBh4EIXTWV5mzspSxVrStgPc27fGx0XcteMj1WhI1QSSUa0UvCYRyIGody4Bv07pg7Bf9thpi6g4karFUO_Bw7TpqKN6yhdaZv_6G3fl7bzorSmmaTP36Dtkelg48xwNhNwRxUWDpKunV03Tq67nF0-cKbh9i5P8DwyP_MKgN5BPfGwvKfuO7senf-N_w3z76qrw</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Chen, Wenting</creator><creator>Liu, Pei</creator><creator>Sun, Xia</creator><creator>Xiong, Biao</creator><creator>Cui, Huahua</creator><creator>Zhao, Zhenghong</creator><creator>Ning, Yin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1808-3513</orcidid></search><sort><creationdate>20241021</creationdate><title>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</title><author>Chen, Wenting ; Liu, Pei ; Sun, Xia ; Xiong, Biao ; Cui, Huahua ; Zhao, Zhenghong ; Ning, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2588-3dd08c575c32fb994a6c5e2b108c3f7c669b92cf502fe59a878b903efd0afd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>block copolymer</topic><topic>Block copolymers</topic><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>composite crystal</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electrostatic properties</topic><topic>Materials science</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Occlusion</topic><topic>organic–inorganic hybrid materials</topic><topic>polymerization-induced self-assembly</topic><topic>Self-assembly</topic><topic>Single crystals</topic><topic>Spatial distribution</topic><topic>spatioselective occlusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenting</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Sun, Xia</creatorcontrib><creatorcontrib>Xiong, Biao</creatorcontrib><creatorcontrib>Cui, Huahua</creatorcontrib><creatorcontrib>Zhao, Zhenghong</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenting</au><au>Liu, Pei</au><au>Sun, Xia</au><au>Xiong, Biao</au><au>Cui, Huahua</au><au>Zhao, Zhenghong</au><au>Ning, Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-10-21</date><risdate>2024</risdate><volume>63</volume><issue>43</issue><spage>e202410908</spage><epage>n/a</epage><pages>e202410908-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Efficient occlusion of particulate additives into a single crystal has garnered an ever‐increasing attention in materials science because it offers a counter‐intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization‐induced self‐assembly is employed to synthesize well‐defined and highly anionic poly(3‐sulfopropyl methacrylate potassium)41‐block‐poly(benzyl methacrylate)500 [PSPMA41‐PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.
This study provides a powerful yet straightforward way to regulate the internal composition and structure of a single calcite crystal, generating a series of organic‐inorganic hybrid materials where the organic additives are preferentially distributed within specific regions of the inorganic host crystals.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38954489</pmid><doi>10.1002/anie.202410908</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-1808-3513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-10, Vol.63 (43), p.e202410908-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3075372716 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Additives block copolymer Block copolymers Calcite Calcium carbonate Calcium ions composite crystal Crystal growth Crystal structure Crystals Electrostatic properties Materials science Mineralization Nanocomposites Nanoparticles Occlusion organic–inorganic hybrid materials polymerization-induced self-assembly Self-assembly Single crystals Spatial distribution spatioselective occlusion |
title | Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatioselective%20Occlusion%20of%20Copolymer%20Nanoparticles%20within%20Calcite%20Crystals%20Generates%20Organic%E2%80%90Inorganic%20Hybrid%20Materials%20with%20Controlled%20Internal%20Structures&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chen,%20Wenting&rft.date=2024-10-21&rft.volume=63&rft.issue=43&rft.spage=e202410908&rft.epage=n/a&rft.pages=e202410908-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202410908&rft_dat=%3Cproquest_cross%3E3075372716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116171614&rft_id=info:pmid/38954489&rfr_iscdi=true |