Recent Developments in 1,2,3‐Triazole Based α‐Glucosidase Inhibitors: Design Strategies, Structure‐Activity Relationship and Mechanistic Insights

Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life‐threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biodiversity 2024-09, Vol.21 (9), p.e202401109-n/a
Hauptverfasser: Singh, Atamjit, Singh, Karanvir, Sharma, Aman, Kaur, Uttam, Kaur, Kamaljit, Mohinder Singh Bedi, Preet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e202401109
container_title Chemistry & biodiversity
container_volume 21
creator Singh, Atamjit
Singh, Karanvir
Sharma, Aman
Kaur, Uttam
Kaur, Kamaljit
Mohinder Singh Bedi, Preet
description Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life‐threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α‐Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α‐glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α‐glucosidase inhibitors. The 1,2,3‐Triazole nucleus is energetically used by various research groups around the globe for the development of α‐glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α‐glucosidase inhibitors developed by employing 1,2,3‐triazole scaffold with special focus on design strategies, structure‐activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α‐glucosidase inhibitors with desired properties and improved therapeutic efficacy.
doi_str_mv 10.1002/cbdv.202401109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074728465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117643525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-7c5ecd036c81f2eba3d3d014f21683323c239bee2fc8e23ee27c74685f2f6a8a3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1UREth22VlqRsWSfDPjMfTXZpCqVSEVApby-O507ia2KntCQorHoElr8GL8BA8CY5SgtQNKx8dffeTpYPQESUTSgh7bZp2NWGEFYRSUj9BB1RQNqZSkr1drtg-eh7jXeZzL5-hfS7rktZCHKAf12DAJXwOK-j9cpFzxNZhOmIj_vvb95tg9VffAz7TEVr862fuLvrB-Gjb3OBLN7eNTT7E0-yI9tbhjynoBLcW4miTB5OGAPlsapJd2bTG19DrZL2Lc7vE2rX4PZi5djYma7IwS-YpvkBPO91HePnwHqJPb9_czN6Nrz5cXM6mV2PDSlmPK1OCaQkXRtKOQaN5y1tCi45RITln3DBeNwCsMxIYz6EyVSFk2bFOaKn5IXq19S6Dvx8gJrWw0UDfawd-iIqTqqiYLESZ0ZNH6J0fgsu_U5zSShS8ZBtqsqVM8DEG6NQy2IUOa0WJ2mymNpup3Wb54PhBOzQLaHf435EyUG-BL7aH9X90anZ2_vmf_A8n7Khh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117643525</pqid></control><display><type>article</type><title>Recent Developments in 1,2,3‐Triazole Based α‐Glucosidase Inhibitors: Design Strategies, Structure‐Activity Relationship and Mechanistic Insights</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Singh, Atamjit ; Singh, Karanvir ; Sharma, Aman ; Kaur, Uttam ; Kaur, Kamaljit ; Mohinder Singh Bedi, Preet</creator><creatorcontrib>Singh, Atamjit ; Singh, Karanvir ; Sharma, Aman ; Kaur, Uttam ; Kaur, Kamaljit ; Mohinder Singh Bedi, Preet</creatorcontrib><description>Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life‐threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α‐Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α‐glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α‐glucosidase inhibitors. The 1,2,3‐Triazole nucleus is energetically used by various research groups around the globe for the development of α‐glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α‐glucosidase inhibitors developed by employing 1,2,3‐triazole scaffold with special focus on design strategies, structure‐activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α‐glucosidase inhibitors with desired properties and improved therapeutic efficacy.</description><identifier>ISSN: 1612-1872</identifier><identifier>ISSN: 1612-1880</identifier><identifier>EISSN: 1612-1880</identifier><identifier>DOI: 10.1002/cbdv.202401109</identifier><identifier>PMID: 38951966</identifier><language>eng</language><publisher>Switzerland: Wiley Subscription Services, Inc</publisher><subject>1,2,3-triazole ; alpha-Glucosidases - chemistry ; alpha-Glucosidases - metabolism ; Amputation ; Antidiabetic ; Antidiabetics ; Antifungal agents ; Carbohydrates ; Chemical activity ; Chemists ; Diabetes mellitus ; Drug Design ; Drug development ; Drugs ; Effectiveness ; Glucosidase ; Glycoside Hydrolase Inhibitors - chemical synthesis ; Glycoside Hydrolase Inhibitors - chemistry ; Glycoside Hydrolase Inhibitors - pharmacology ; Heart diseases ; Humans ; Hypoglycemic Agents - chemical synthesis ; Hypoglycemic Agents - chemistry ; Hypoglycemic Agents - pharmacology ; Inhibitors ; Metabolic disorders ; Molecular Structure ; Nervous system ; Postprandial hyperglycemia ; Renal failure ; Retinopathy ; Scaffolds ; Side effects ; Structure-Activity Relationship ; Triazoles ; Triazoles - chemical synthesis ; Triazoles - chemistry ; Triazoles - pharmacology ; α-Glucosidase</subject><ispartof>Chemistry &amp; biodiversity, 2024-09, Vol.21 (9), p.e202401109-n/a</ispartof><rights>2024 Wiley-VHCA AG, Zurich, Switzerland</rights><rights>2024 Wiley-VHCA AG, Zurich, Switzerland.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2589-7c5ecd036c81f2eba3d3d014f21683323c239bee2fc8e23ee27c74685f2f6a8a3</cites><orcidid>0000-0001-5439-8032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbdv.202401109$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbdv.202401109$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38951966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Atamjit</creatorcontrib><creatorcontrib>Singh, Karanvir</creatorcontrib><creatorcontrib>Sharma, Aman</creatorcontrib><creatorcontrib>Kaur, Uttam</creatorcontrib><creatorcontrib>Kaur, Kamaljit</creatorcontrib><creatorcontrib>Mohinder Singh Bedi, Preet</creatorcontrib><title>Recent Developments in 1,2,3‐Triazole Based α‐Glucosidase Inhibitors: Design Strategies, Structure‐Activity Relationship and Mechanistic Insights</title><title>Chemistry &amp; biodiversity</title><addtitle>Chem Biodivers</addtitle><description>Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life‐threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α‐Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α‐glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α‐glucosidase inhibitors. The 1,2,3‐Triazole nucleus is energetically used by various research groups around the globe for the development of α‐glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α‐glucosidase inhibitors developed by employing 1,2,3‐triazole scaffold with special focus on design strategies, structure‐activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α‐glucosidase inhibitors with desired properties and improved therapeutic efficacy.</description><subject>1,2,3-triazole</subject><subject>alpha-Glucosidases - chemistry</subject><subject>alpha-Glucosidases - metabolism</subject><subject>Amputation</subject><subject>Antidiabetic</subject><subject>Antidiabetics</subject><subject>Antifungal agents</subject><subject>Carbohydrates</subject><subject>Chemical activity</subject><subject>Chemists</subject><subject>Diabetes mellitus</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Drugs</subject><subject>Effectiveness</subject><subject>Glucosidase</subject><subject>Glycoside Hydrolase Inhibitors - chemical synthesis</subject><subject>Glycoside Hydrolase Inhibitors - chemistry</subject><subject>Glycoside Hydrolase Inhibitors - pharmacology</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Hypoglycemic Agents - chemical synthesis</subject><subject>Hypoglycemic Agents - chemistry</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Inhibitors</subject><subject>Metabolic disorders</subject><subject>Molecular Structure</subject><subject>Nervous system</subject><subject>Postprandial hyperglycemia</subject><subject>Renal failure</subject><subject>Retinopathy</subject><subject>Scaffolds</subject><subject>Side effects</subject><subject>Structure-Activity Relationship</subject><subject>Triazoles</subject><subject>Triazoles - chemical synthesis</subject><subject>Triazoles - chemistry</subject><subject>Triazoles - pharmacology</subject><subject>α-Glucosidase</subject><issn>1612-1872</issn><issn>1612-1880</issn><issn>1612-1880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS1UREth22VlqRsWSfDPjMfTXZpCqVSEVApby-O507ia2KntCQorHoElr8GL8BA8CY5SgtQNKx8dffeTpYPQESUTSgh7bZp2NWGEFYRSUj9BB1RQNqZSkr1drtg-eh7jXeZzL5-hfS7rktZCHKAf12DAJXwOK-j9cpFzxNZhOmIj_vvb95tg9VffAz7TEVr862fuLvrB-Gjb3OBLN7eNTT7E0-yI9tbhjynoBLcW4miTB5OGAPlsapJd2bTG19DrZL2Lc7vE2rX4PZi5djYma7IwS-YpvkBPO91HePnwHqJPb9_czN6Nrz5cXM6mV2PDSlmPK1OCaQkXRtKOQaN5y1tCi45RITln3DBeNwCsMxIYz6EyVSFk2bFOaKn5IXq19S6Dvx8gJrWw0UDfawd-iIqTqqiYLESZ0ZNH6J0fgsu_U5zSShS8ZBtqsqVM8DEG6NQy2IUOa0WJ2mymNpup3Wb54PhBOzQLaHf435EyUG-BL7aH9X90anZ2_vmf_A8n7Khh</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Singh, Atamjit</creator><creator>Singh, Karanvir</creator><creator>Sharma, Aman</creator><creator>Kaur, Uttam</creator><creator>Kaur, Kamaljit</creator><creator>Mohinder Singh Bedi, Preet</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5439-8032</orcidid></search><sort><creationdate>202409</creationdate><title>Recent Developments in 1,2,3‐Triazole Based α‐Glucosidase Inhibitors: Design Strategies, Structure‐Activity Relationship and Mechanistic Insights</title><author>Singh, Atamjit ; Singh, Karanvir ; Sharma, Aman ; Kaur, Uttam ; Kaur, Kamaljit ; Mohinder Singh Bedi, Preet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-7c5ecd036c81f2eba3d3d014f21683323c239bee2fc8e23ee27c74685f2f6a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1,2,3-triazole</topic><topic>alpha-Glucosidases - chemistry</topic><topic>alpha-Glucosidases - metabolism</topic><topic>Amputation</topic><topic>Antidiabetic</topic><topic>Antidiabetics</topic><topic>Antifungal agents</topic><topic>Carbohydrates</topic><topic>Chemical activity</topic><topic>Chemists</topic><topic>Diabetes mellitus</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Drugs</topic><topic>Effectiveness</topic><topic>Glucosidase</topic><topic>Glycoside Hydrolase Inhibitors - chemical synthesis</topic><topic>Glycoside Hydrolase Inhibitors - chemistry</topic><topic>Glycoside Hydrolase Inhibitors - pharmacology</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Hypoglycemic Agents - chemical synthesis</topic><topic>Hypoglycemic Agents - chemistry</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Inhibitors</topic><topic>Metabolic disorders</topic><topic>Molecular Structure</topic><topic>Nervous system</topic><topic>Postprandial hyperglycemia</topic><topic>Renal failure</topic><topic>Retinopathy</topic><topic>Scaffolds</topic><topic>Side effects</topic><topic>Structure-Activity Relationship</topic><topic>Triazoles</topic><topic>Triazoles - chemical synthesis</topic><topic>Triazoles - chemistry</topic><topic>Triazoles - pharmacology</topic><topic>α-Glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Atamjit</creatorcontrib><creatorcontrib>Singh, Karanvir</creatorcontrib><creatorcontrib>Sharma, Aman</creatorcontrib><creatorcontrib>Kaur, Uttam</creatorcontrib><creatorcontrib>Kaur, Kamaljit</creatorcontrib><creatorcontrib>Mohinder Singh Bedi, Preet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry &amp; biodiversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Atamjit</au><au>Singh, Karanvir</au><au>Sharma, Aman</au><au>Kaur, Uttam</au><au>Kaur, Kamaljit</au><au>Mohinder Singh Bedi, Preet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Developments in 1,2,3‐Triazole Based α‐Glucosidase Inhibitors: Design Strategies, Structure‐Activity Relationship and Mechanistic Insights</atitle><jtitle>Chemistry &amp; biodiversity</jtitle><addtitle>Chem Biodivers</addtitle><date>2024-09</date><risdate>2024</risdate><volume>21</volume><issue>9</issue><spage>e202401109</spage><epage>n/a</epage><pages>e202401109-n/a</pages><issn>1612-1872</issn><issn>1612-1880</issn><eissn>1612-1880</eissn><abstract>Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life‐threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α‐Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α‐glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α‐glucosidase inhibitors. The 1,2,3‐Triazole nucleus is energetically used by various research groups around the globe for the development of α‐glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α‐glucosidase inhibitors developed by employing 1,2,3‐triazole scaffold with special focus on design strategies, structure‐activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α‐glucosidase inhibitors with desired properties and improved therapeutic efficacy.</abstract><cop>Switzerland</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38951966</pmid><doi>10.1002/cbdv.202401109</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5439-8032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-1872
ispartof Chemistry & biodiversity, 2024-09, Vol.21 (9), p.e202401109-n/a
issn 1612-1872
1612-1880
1612-1880
language eng
recordid cdi_proquest_miscellaneous_3074728465
source MEDLINE; Wiley Online Library Journals
subjects 1,2,3-triazole
alpha-Glucosidases - chemistry
alpha-Glucosidases - metabolism
Amputation
Antidiabetic
Antidiabetics
Antifungal agents
Carbohydrates
Chemical activity
Chemists
Diabetes mellitus
Drug Design
Drug development
Drugs
Effectiveness
Glucosidase
Glycoside Hydrolase Inhibitors - chemical synthesis
Glycoside Hydrolase Inhibitors - chemistry
Glycoside Hydrolase Inhibitors - pharmacology
Heart diseases
Humans
Hypoglycemic Agents - chemical synthesis
Hypoglycemic Agents - chemistry
Hypoglycemic Agents - pharmacology
Inhibitors
Metabolic disorders
Molecular Structure
Nervous system
Postprandial hyperglycemia
Renal failure
Retinopathy
Scaffolds
Side effects
Structure-Activity Relationship
Triazoles
Triazoles - chemical synthesis
Triazoles - chemistry
Triazoles - pharmacology
α-Glucosidase
title Recent Developments in 1,2,3‐Triazole Based α‐Glucosidase Inhibitors: Design Strategies, Structure‐Activity Relationship and Mechanistic Insights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Developments%20in%201,2,3%E2%80%90Triazole%20Based%20%CE%B1%E2%80%90Glucosidase%20Inhibitors:%20Design%20Strategies,%20Structure%E2%80%90Activity%20Relationship%20and%20Mechanistic%20Insights&rft.jtitle=Chemistry%20&%20biodiversity&rft.au=Singh,%20Atamjit&rft.date=2024-09&rft.volume=21&rft.issue=9&rft.spage=e202401109&rft.epage=n/a&rft.pages=e202401109-n/a&rft.issn=1612-1872&rft.eissn=1612-1880&rft_id=info:doi/10.1002/cbdv.202401109&rft_dat=%3Cproquest_cross%3E3117643525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117643525&rft_id=info:pmid/38951966&rfr_iscdi=true