Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels

Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.9255-9271
Hauptverfasser: Pan, Cong, Peng, Junran, Bu, Xingyuan, Zhang, Zhaoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9271
container_issue 12
container_start_page 9255
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Pan, Cong
Peng, Junran
Bu, Xingyuan
Zhang, Zhaoxiang
description Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-automatic collection and labeling process, designed to manage the huge data scale, leads to label-related problems, including explicit or implicit multiple labels per object and highly imbalanced label distribution. In this work, we quantitatively analyze the major problems in large-scale object detection and provide a detailed yet comprehensive demonstration of our solutions. First, we design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-balance sampling method with a hybrid training scheduler to address the label imbalance. This approach yields a notable improvement of 3.34 points, achieving the best single-model performance with a mAP of 60.90% on the public object detection test set of Open Images. Then, we introduce a well-designed ensemble mechanism that substantially enhances the performance of the single model, achieving an overall mAP of 67.17%, which is 4.29 points higher than the best result from the Open Images public test 2018.
doi_str_mv 10.1109/TPAMI.2024.3421300
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074718114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10579784</ieee_id><sourcerecordid>3074718114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-9671218b65743d878ce67d994ab9c4a57e3801634a406fbab00907a89369adb43</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwAwghL1mQYsdObC-rlkelVEWiiA1SZCdT6iqPEjsL_p6EFsRmZnPu1cxB6JKSMaVE3a2eJ4v5OCQhHzMeUkbIERpSxVTAIqaO0ZDQOAykDOUAnTm3JYTyiLBTNGBScaW4GKL3RDcfELxkugC8NFvIPJ6B75atK2wr7DeA32yRd8Nv8Lw0utBVBjmeaa_xzDrfWNP29C3WVY4XbeFtkGgDhTtHJ2tdOLg47BF6fbhfTZ-CZPk4n06SIAtJ5AMVCxpSaeJIcJZLITOIRd7dp43KuI4EMNm9wrjmJF4bbQhRRGipWKx0bjgboZt9766pP1twPi2ty6DoLoW6dSkjggsqKe3RcI9mTe1cA-t019hSN18pJWlvNf2xmvZW04PVLnR96G9NCflf5FdjB1ztAQsA_xojoYTk7BuPK3n-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074718114</pqid></control><display><type>article</type><title>Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Cong ; Peng, Junran ; Bu, Xingyuan ; Zhang, Zhaoxiang</creator><creatorcontrib>Pan, Cong ; Peng, Junran ; Bu, Xingyuan ; Zhang, Zhaoxiang</creatorcontrib><description>Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-automatic collection and labeling process, designed to manage the huge data scale, leads to label-related problems, including explicit or implicit multiple labels per object and highly imbalanced label distribution. In this work, we quantitatively analyze the major problems in large-scale object detection and provide a detailed yet comprehensive demonstration of our solutions. First, we design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-balance sampling method with a hybrid training scheduler to address the label imbalance. This approach yields a notable improvement of 3.34 points, achieving the best single-model performance with a mAP of 60.90% on the public object detection test set of Open Images. Then, we introduce a well-designed ensemble mechanism that substantially enhances the performance of the single model, achieving an overall mAP of 67.17%, which is 4.29 points higher than the best result from the Open Images public test 2018.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3421300</identifier><identifier>PMID: 38949947</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Automobiles ; Computer vision ; Deep learning ; Detectors ; long-tail distribution ; multi-labels ; noisy labels ; Object detection ; Toy manufacturing industry ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.9255-9271</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-9671218b65743d878ce67d994ab9c4a57e3801634a406fbab00907a89369adb43</cites><orcidid>0000-0001-5959-4294 ; 0000-0001-5276-0114 ; 0000-0003-2648-3875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10579784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10579784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38949947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Cong</creatorcontrib><creatorcontrib>Peng, Junran</creatorcontrib><creatorcontrib>Bu, Xingyuan</creatorcontrib><creatorcontrib>Zhang, Zhaoxiang</creatorcontrib><title>Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-automatic collection and labeling process, designed to manage the huge data scale, leads to label-related problems, including explicit or implicit multiple labels per object and highly imbalanced label distribution. In this work, we quantitatively analyze the major problems in large-scale object detection and provide a detailed yet comprehensive demonstration of our solutions. First, we design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-balance sampling method with a hybrid training scheduler to address the label imbalance. This approach yields a notable improvement of 3.34 points, achieving the best single-model performance with a mAP of 60.90% on the public object detection test set of Open Images. Then, we introduce a well-designed ensemble mechanism that substantially enhances the performance of the single model, achieving an overall mAP of 67.17%, which is 4.29 points higher than the best result from the Open Images public test 2018.</description><subject>Annotations</subject><subject>Automobiles</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>long-tail distribution</subject><subject>multi-labels</subject><subject>noisy labels</subject><subject>Object detection</subject><subject>Toy manufacturing industry</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EoqXwAwghL1mQYsdObC-rlkelVEWiiA1SZCdT6iqPEjsL_p6EFsRmZnPu1cxB6JKSMaVE3a2eJ4v5OCQhHzMeUkbIERpSxVTAIqaO0ZDQOAykDOUAnTm3JYTyiLBTNGBScaW4GKL3RDcfELxkugC8NFvIPJ6B75atK2wr7DeA32yRd8Nv8Lw0utBVBjmeaa_xzDrfWNP29C3WVY4XbeFtkGgDhTtHJ2tdOLg47BF6fbhfTZ-CZPk4n06SIAtJ5AMVCxpSaeJIcJZLITOIRd7dp43KuI4EMNm9wrjmJF4bbQhRRGipWKx0bjgboZt9766pP1twPi2ty6DoLoW6dSkjggsqKe3RcI9mTe1cA-t019hSN18pJWlvNf2xmvZW04PVLnR96G9NCflf5FdjB1ztAQsA_xojoYTk7BuPK3n-</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Pan, Cong</creator><creator>Peng, Junran</creator><creator>Bu, Xingyuan</creator><creator>Zhang, Zhaoxiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5959-4294</orcidid><orcidid>https://orcid.org/0000-0001-5276-0114</orcidid><orcidid>https://orcid.org/0000-0003-2648-3875</orcidid></search><sort><creationdate>202412</creationdate><title>Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels</title><author>Pan, Cong ; Peng, Junran ; Bu, Xingyuan ; Zhang, Zhaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-9671218b65743d878ce67d994ab9c4a57e3801634a406fbab00907a89369adb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Automobiles</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>long-tail distribution</topic><topic>multi-labels</topic><topic>noisy labels</topic><topic>Object detection</topic><topic>Toy manufacturing industry</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Cong</creatorcontrib><creatorcontrib>Peng, Junran</creatorcontrib><creatorcontrib>Bu, Xingyuan</creatorcontrib><creatorcontrib>Zhang, Zhaoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Cong</au><au>Peng, Junran</au><au>Bu, Xingyuan</au><au>Zhang, Zhaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-12</date><risdate>2024</risdate><volume>46</volume><issue>12</issue><spage>9255</spage><epage>9271</epage><pages>9255-9271</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-automatic collection and labeling process, designed to manage the huge data scale, leads to label-related problems, including explicit or implicit multiple labels per object and highly imbalanced label distribution. In this work, we quantitatively analyze the major problems in large-scale object detection and provide a detailed yet comprehensive demonstration of our solutions. First, we design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-balance sampling method with a hybrid training scheduler to address the label imbalance. This approach yields a notable improvement of 3.34 points, achieving the best single-model performance with a mAP of 60.90% on the public object detection test set of Open Images. Then, we introduce a well-designed ensemble mechanism that substantially enhances the performance of the single model, achieving an overall mAP of 67.17%, which is 4.29 points higher than the best result from the Open Images public test 2018.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38949947</pmid><doi>10.1109/TPAMI.2024.3421300</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5959-4294</orcidid><orcidid>https://orcid.org/0000-0001-5276-0114</orcidid><orcidid>https://orcid.org/0000-0003-2648-3875</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.9255-9271
issn 0162-8828
1939-3539
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_3074718114
source IEEE Electronic Library (IEL)
subjects Annotations
Automobiles
Computer vision
Deep learning
Detectors
long-tail distribution
multi-labels
noisy labels
Object detection
Toy manufacturing industry
Training
title Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Object%20Detection%20in%20the%20Wild%20With%20Imbalanced%20Data%20Distribution,%20and%20Multi-Labels&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Pan,%20Cong&rft.date=2024-12&rft.volume=46&rft.issue=12&rft.spage=9255&rft.epage=9271&rft.pages=9255-9271&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3421300&rft_dat=%3Cproquest_RIE%3E3074718114%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074718114&rft_id=info:pmid/38949947&rft_ieee_id=10579784&rfr_iscdi=true