Engineered Lipids for Intracellular Reactive Oxygen Species Scavenging in Steatotic Hepatocytes
Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid trans...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (44), p.e2400816-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | e2400816 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Westensee, Isabella N. de Dios Andres, Paula Brodszkij, Edit Descours, Pierre‐Louis Perez‐Rodriguez, Diego Spinazzola, Antonella Mookerjee, Rajeshwar Prosad Städler, Brigitte |
description | Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid transport mechanisms are investigated. Initially, it is shown that tail‐labeled fluorescent lipids assembled into liposomes are able to be transported to intracellular lipid droplets in steatotic HepG2 cells and HHL‐5 cells. Further, an antioxidant, an EUK salen–manganese derivative, which has superoxide dismutase‐like and catalase‐like activity, is covalently conjugated to the tail of a phospholipid and formulated as liposomes for administration. Steatotic HepG2 cells and HHL‐5 cells incubated with these antioxidant liposomes have lower intracellular ROS levels compared to untreated controls and non‐covalently formulated antioxidants. This first proof‐of‐concept study illustrates an alternative strategy to equip native organelles in mammalian cells with engineered enzyme activity.
The level of intracellular reactive oxygen species (ROS) in steatotic cells is lowered by delivering tailored phospholipids to lipid droplets via intrinsic intracellular transport mechanisms. Fluorescent lipids and a EUK salen–manganese derivative conjugated to lipids, both formulated as liposomes, effectively target intracellular lipid droplets in steatotic HepG2 and HHL‐5 cells, leading to reduced intracellular ROS levels. |
doi_str_mv | 10.1002/smll.202400816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074137589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122905279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3826-4c15207ffbcf5ac45a70754fe605288a0208e10c797522c33ee07c0c7e6b5c4f3</originalsourceid><addsrcrecordid>eNqFkLtPwzAQhy0E4r0yIkssLC3nR-JkRIhHpSAkCrPlupfKKE2CnQD973HUUiQWJp9P3_3s-wg5YzBmAPwqLKtqzIFLgIylO-SQpUyM0oznu9uawQE5CuENQDAu1T45EFkuc5DqkOjbeuFqRI9zWrjWzQMtG08ndeeNxarqK-PpMxrbuQ-kT1-rBdZ02qJ1GOjUmg8c5hfUxW6Hpms6Z-kDtrGyqw7DCdkrTRXwdHMek9e725ebh1HxdD-5uS5GVmQ8HUnLEg6qLGe2TIyViVGgElliCgnPMgMcMmRgVa4Szq0QiKBsvGM6S6wsxTG5XOe2vnnvMXR66cKwgKmx6YMWoCQTKsnyiF78Qd-a3tfxdzr64Xl8UQ3UeE1Z34TgsdStd0vjV5qBHtTrQb3eqo8D55vYfrbE-Rb_cR2BfA18ugpX_8Tp6WNR_IZ_A8XvkCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122905279</pqid></control><display><type>article</type><title>Engineered Lipids for Intracellular Reactive Oxygen Species Scavenging in Steatotic Hepatocytes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Westensee, Isabella N. ; de Dios Andres, Paula ; Brodszkij, Edit ; Descours, Pierre‐Louis ; Perez‐Rodriguez, Diego ; Spinazzola, Antonella ; Mookerjee, Rajeshwar Prosad ; Städler, Brigitte</creator><creatorcontrib>Westensee, Isabella N. ; de Dios Andres, Paula ; Brodszkij, Edit ; Descours, Pierre‐Louis ; Perez‐Rodriguez, Diego ; Spinazzola, Antonella ; Mookerjee, Rajeshwar Prosad ; Städler, Brigitte</creatorcontrib><description>Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid transport mechanisms are investigated. Initially, it is shown that tail‐labeled fluorescent lipids assembled into liposomes are able to be transported to intracellular lipid droplets in steatotic HepG2 cells and HHL‐5 cells. Further, an antioxidant, an EUK salen–manganese derivative, which has superoxide dismutase‐like and catalase‐like activity, is covalently conjugated to the tail of a phospholipid and formulated as liposomes for administration. Steatotic HepG2 cells and HHL‐5 cells incubated with these antioxidant liposomes have lower intracellular ROS levels compared to untreated controls and non‐covalently formulated antioxidants. This first proof‐of‐concept study illustrates an alternative strategy to equip native organelles in mammalian cells with engineered enzyme activity.
The level of intracellular reactive oxygen species (ROS) in steatotic cells is lowered by delivering tailored phospholipids to lipid droplets via intrinsic intracellular transport mechanisms. Fluorescent lipids and a EUK salen–manganese derivative conjugated to lipids, both formulated as liposomes, effectively target intracellular lipid droplets in steatotic HepG2 and HHL‐5 cells, leading to reduced intracellular ROS levels.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202400816</identifier><identifier>PMID: 38949047</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>antioxidant ; Antioxidants ; Antioxidants - chemistry ; Antioxidants - metabolism ; Antioxidants - pharmacology ; Catalase ; Droplets ; Enzyme activity ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Fluorescence ; Free Radical Scavengers - chemistry ; Free Radical Scavengers - pharmacology ; Hep G2 Cells ; Hepatocytes - metabolism ; Humans ; intracellular ROS ; Lipids ; Lipids - chemistry ; Liposomes ; Liposomes - chemistry ; Manganese ; Organelles ; Oxygen ; Phospholipids ; Reactive Oxygen Species - metabolism ; Scavenging ; steatosis ; Superoxide dismutase</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (44), p.e2400816-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3826-4c15207ffbcf5ac45a70754fe605288a0208e10c797522c33ee07c0c7e6b5c4f3</cites><orcidid>0000-0003-4242-8091 ; 0000-0003-4903-3914 ; 0000-0002-4911-1604 ; 0009-0003-2581-9151 ; 0000-0003-4895-0964 ; 0000-0002-7335-3945 ; 0000-0003-3315-5319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202400816$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202400816$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38949047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westensee, Isabella N.</creatorcontrib><creatorcontrib>de Dios Andres, Paula</creatorcontrib><creatorcontrib>Brodszkij, Edit</creatorcontrib><creatorcontrib>Descours, Pierre‐Louis</creatorcontrib><creatorcontrib>Perez‐Rodriguez, Diego</creatorcontrib><creatorcontrib>Spinazzola, Antonella</creatorcontrib><creatorcontrib>Mookerjee, Rajeshwar Prosad</creatorcontrib><creatorcontrib>Städler, Brigitte</creatorcontrib><title>Engineered Lipids for Intracellular Reactive Oxygen Species Scavenging in Steatotic Hepatocytes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid transport mechanisms are investigated. Initially, it is shown that tail‐labeled fluorescent lipids assembled into liposomes are able to be transported to intracellular lipid droplets in steatotic HepG2 cells and HHL‐5 cells. Further, an antioxidant, an EUK salen–manganese derivative, which has superoxide dismutase‐like and catalase‐like activity, is covalently conjugated to the tail of a phospholipid and formulated as liposomes for administration. Steatotic HepG2 cells and HHL‐5 cells incubated with these antioxidant liposomes have lower intracellular ROS levels compared to untreated controls and non‐covalently formulated antioxidants. This first proof‐of‐concept study illustrates an alternative strategy to equip native organelles in mammalian cells with engineered enzyme activity.
The level of intracellular reactive oxygen species (ROS) in steatotic cells is lowered by delivering tailored phospholipids to lipid droplets via intrinsic intracellular transport mechanisms. Fluorescent lipids and a EUK salen–manganese derivative conjugated to lipids, both formulated as liposomes, effectively target intracellular lipid droplets in steatotic HepG2 and HHL‐5 cells, leading to reduced intracellular ROS levels.</description><subject>antioxidant</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Antioxidants - pharmacology</subject><subject>Catalase</subject><subject>Droplets</subject><subject>Enzyme activity</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Fluorescence</subject><subject>Free Radical Scavengers - chemistry</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Hep G2 Cells</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>intracellular ROS</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Manganese</subject><subject>Organelles</subject><subject>Oxygen</subject><subject>Phospholipids</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scavenging</subject><subject>steatosis</subject><subject>Superoxide dismutase</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkLtPwzAQhy0E4r0yIkssLC3nR-JkRIhHpSAkCrPlupfKKE2CnQD973HUUiQWJp9P3_3s-wg5YzBmAPwqLKtqzIFLgIylO-SQpUyM0oznu9uawQE5CuENQDAu1T45EFkuc5DqkOjbeuFqRI9zWrjWzQMtG08ndeeNxarqK-PpMxrbuQ-kT1-rBdZ02qJ1GOjUmg8c5hfUxW6Hpms6Z-kDtrGyqw7DCdkrTRXwdHMek9e725ebh1HxdD-5uS5GVmQ8HUnLEg6qLGe2TIyViVGgElliCgnPMgMcMmRgVa4Szq0QiKBsvGM6S6wsxTG5XOe2vnnvMXR66cKwgKmx6YMWoCQTKsnyiF78Qd-a3tfxdzr64Xl8UQ3UeE1Z34TgsdStd0vjV5qBHtTrQb3eqo8D55vYfrbE-Rb_cR2BfA18ugpX_8Tp6WNR_IZ_A8XvkCY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Westensee, Isabella N.</creator><creator>de Dios Andres, Paula</creator><creator>Brodszkij, Edit</creator><creator>Descours, Pierre‐Louis</creator><creator>Perez‐Rodriguez, Diego</creator><creator>Spinazzola, Antonella</creator><creator>Mookerjee, Rajeshwar Prosad</creator><creator>Städler, Brigitte</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4242-8091</orcidid><orcidid>https://orcid.org/0000-0003-4903-3914</orcidid><orcidid>https://orcid.org/0000-0002-4911-1604</orcidid><orcidid>https://orcid.org/0009-0003-2581-9151</orcidid><orcidid>https://orcid.org/0000-0003-4895-0964</orcidid><orcidid>https://orcid.org/0000-0002-7335-3945</orcidid><orcidid>https://orcid.org/0000-0003-3315-5319</orcidid></search><sort><creationdate>20241101</creationdate><title>Engineered Lipids for Intracellular Reactive Oxygen Species Scavenging in Steatotic Hepatocytes</title><author>Westensee, Isabella N. ; de Dios Andres, Paula ; Brodszkij, Edit ; Descours, Pierre‐Louis ; Perez‐Rodriguez, Diego ; Spinazzola, Antonella ; Mookerjee, Rajeshwar Prosad ; Städler, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3826-4c15207ffbcf5ac45a70754fe605288a0208e10c797522c33ee07c0c7e6b5c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>antioxidant</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Antioxidants - pharmacology</topic><topic>Catalase</topic><topic>Droplets</topic><topic>Enzyme activity</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Fluorescence</topic><topic>Free Radical Scavengers - chemistry</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Hep G2 Cells</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>intracellular ROS</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Manganese</topic><topic>Organelles</topic><topic>Oxygen</topic><topic>Phospholipids</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scavenging</topic><topic>steatosis</topic><topic>Superoxide dismutase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westensee, Isabella N.</creatorcontrib><creatorcontrib>de Dios Andres, Paula</creatorcontrib><creatorcontrib>Brodszkij, Edit</creatorcontrib><creatorcontrib>Descours, Pierre‐Louis</creatorcontrib><creatorcontrib>Perez‐Rodriguez, Diego</creatorcontrib><creatorcontrib>Spinazzola, Antonella</creatorcontrib><creatorcontrib>Mookerjee, Rajeshwar Prosad</creatorcontrib><creatorcontrib>Städler, Brigitte</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westensee, Isabella N.</au><au>de Dios Andres, Paula</au><au>Brodszkij, Edit</au><au>Descours, Pierre‐Louis</au><au>Perez‐Rodriguez, Diego</au><au>Spinazzola, Antonella</au><au>Mookerjee, Rajeshwar Prosad</au><au>Städler, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Lipids for Intracellular Reactive Oxygen Species Scavenging in Steatotic Hepatocytes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>44</issue><spage>e2400816</spage><epage>n/a</epage><pages>e2400816-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid transport mechanisms are investigated. Initially, it is shown that tail‐labeled fluorescent lipids assembled into liposomes are able to be transported to intracellular lipid droplets in steatotic HepG2 cells and HHL‐5 cells. Further, an antioxidant, an EUK salen–manganese derivative, which has superoxide dismutase‐like and catalase‐like activity, is covalently conjugated to the tail of a phospholipid and formulated as liposomes for administration. Steatotic HepG2 cells and HHL‐5 cells incubated with these antioxidant liposomes have lower intracellular ROS levels compared to untreated controls and non‐covalently formulated antioxidants. This first proof‐of‐concept study illustrates an alternative strategy to equip native organelles in mammalian cells with engineered enzyme activity.
The level of intracellular reactive oxygen species (ROS) in steatotic cells is lowered by delivering tailored phospholipids to lipid droplets via intrinsic intracellular transport mechanisms. Fluorescent lipids and a EUK salen–manganese derivative conjugated to lipids, both formulated as liposomes, effectively target intracellular lipid droplets in steatotic HepG2 and HHL‐5 cells, leading to reduced intracellular ROS levels.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38949047</pmid><doi>10.1002/smll.202400816</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4242-8091</orcidid><orcidid>https://orcid.org/0000-0003-4903-3914</orcidid><orcidid>https://orcid.org/0000-0002-4911-1604</orcidid><orcidid>https://orcid.org/0009-0003-2581-9151</orcidid><orcidid>https://orcid.org/0000-0003-4895-0964</orcidid><orcidid>https://orcid.org/0000-0002-7335-3945</orcidid><orcidid>https://orcid.org/0000-0003-3315-5319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (44), p.e2400816-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3074137589 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | antioxidant Antioxidants Antioxidants - chemistry Antioxidants - metabolism Antioxidants - pharmacology Catalase Droplets Enzyme activity Fatty Liver - metabolism Fatty Liver - pathology Fluorescence Free Radical Scavengers - chemistry Free Radical Scavengers - pharmacology Hep G2 Cells Hepatocytes - metabolism Humans intracellular ROS Lipids Lipids - chemistry Liposomes Liposomes - chemistry Manganese Organelles Oxygen Phospholipids Reactive Oxygen Species - metabolism Scavenging steatosis Superoxide dismutase |
title | Engineered Lipids for Intracellular Reactive Oxygen Species Scavenging in Steatotic Hepatocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Lipids%20for%20Intracellular%20Reactive%20Oxygen%20Species%20Scavenging%20in%20Steatotic%20Hepatocytes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Westensee,%20Isabella%20N.&rft.date=2024-11-01&rft.volume=20&rft.issue=44&rft.spage=e2400816&rft.epage=n/a&rft.pages=e2400816-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202400816&rft_dat=%3Cproquest_cross%3E3122905279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122905279&rft_id=info:pmid/38949047&rfr_iscdi=true |