TiO2 nanotubes with customized diameters for local drug delivery systems
In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two‐diameter]), and a 20–...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-07, Vol.112 (7), p.e35445-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e35445 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 112 |
creator | Miyabe, Sayaka Fujinaga, Yushi Tsuchiya, Hiroaki Fujimoto, Shinji |
description | In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two‐diameter]), and a 20–60 V swept potential (49 nm [full‐tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two‐diameter), 49 nm (full‐tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two‐diameter) sample. Thus, 50 nm (two‐diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two‐diameter and full‐tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties. |
doi_str_mv | 10.1002/jbm.b.35445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074134337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074134337</sourcerecordid><originalsourceid>FETCH-LOGICAL-n2705-8154e260fa11b345a92504d5c1c862e69014c4558b190828cf48c1cbbd08a6483</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqWw4gcssWGT4mfiLGnFU0XdlLVlOw64SuJiJ1Th6zEtYsFqrjRHd0YHgEuMZhghcrPR7UzPKGeMH4EJ5pxkrBT4-C8X9BScxbhJcI44nYDHtVsR2KnO94O2Ee5c_w7NEHvfui9bwcqp1vY2RFj7ABtvVAOrMLzByjbu04YRxjH2to3n4KRWTbQXv3MKXu_v1ovHbLl6eFrcLrOOFIhnAnNm0-1aYawp46okHLGKG2xETmxeIswM41xoXCJBhKmZSDutKyRUzgSdgutD7zb4j8HGXrYuGts0qrN-iJKigmHKKC0SevUP3fghdOm7RAmUY1QmB1NADtTONXaU2-BaFUaJkfxRKpNSqeVeqXyev8z3iX4DzlVqVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080610905</pqid></control><display><type>article</type><title>TiO2 nanotubes with customized diameters for local drug delivery systems</title><source>Wiley Journals</source><creator>Miyabe, Sayaka ; Fujinaga, Yushi ; Tsuchiya, Hiroaki ; Fujimoto, Shinji</creator><creatorcontrib>Miyabe, Sayaka ; Fujinaga, Yushi ; Tsuchiya, Hiroaki ; Fujimoto, Shinji</creatorcontrib><description>In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two‐diameter]), and a 20–60 V swept potential (49 nm [full‐tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two‐diameter), 49 nm (full‐tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two‐diameter) sample. Thus, 50 nm (two‐diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two‐diameter and full‐tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35445</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>anodization ; Customization ; Drug delivery ; Drug delivery systems ; local drug delivery system ; Nanotechnology ; Nanotubes ; oxide nanotubes ; Storage capacity ; TiO2 nanotubes ; Titanium dioxide</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-07, Vol.112 (7), p.e35445-n/a</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7787-4190 ; 0009-0009-3325-3577 ; 0000-0001-5619-0139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35445$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35445$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Miyabe, Sayaka</creatorcontrib><creatorcontrib>Fujinaga, Yushi</creatorcontrib><creatorcontrib>Tsuchiya, Hiroaki</creatorcontrib><creatorcontrib>Fujimoto, Shinji</creatorcontrib><title>TiO2 nanotubes with customized diameters for local drug delivery systems</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><description>In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two‐diameter]), and a 20–60 V swept potential (49 nm [full‐tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two‐diameter), 49 nm (full‐tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two‐diameter) sample. Thus, 50 nm (two‐diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two‐diameter and full‐tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.</description><subject>anodization</subject><subject>Customization</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>local drug delivery system</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>oxide nanotubes</subject><subject>Storage capacity</subject><subject>TiO2 nanotubes</subject><subject>Titanium dioxide</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkMtOwzAQRS0EEqWw4gcssWGT4mfiLGnFU0XdlLVlOw64SuJiJ1Th6zEtYsFqrjRHd0YHgEuMZhghcrPR7UzPKGeMH4EJ5pxkrBT4-C8X9BScxbhJcI44nYDHtVsR2KnO94O2Ee5c_w7NEHvfui9bwcqp1vY2RFj7ABtvVAOrMLzByjbu04YRxjH2to3n4KRWTbQXv3MKXu_v1ovHbLl6eFrcLrOOFIhnAnNm0-1aYawp46okHLGKG2xETmxeIswM41xoXCJBhKmZSDutKyRUzgSdgutD7zb4j8HGXrYuGts0qrN-iJKigmHKKC0SevUP3fghdOm7RAmUY1QmB1NADtTONXaU2-BaFUaJkfxRKpNSqeVeqXyev8z3iX4DzlVqVw</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Miyabe, Sayaka</creator><creator>Fujinaga, Yushi</creator><creator>Tsuchiya, Hiroaki</creator><creator>Fujimoto, Shinji</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7787-4190</orcidid><orcidid>https://orcid.org/0009-0009-3325-3577</orcidid><orcidid>https://orcid.org/0000-0001-5619-0139</orcidid></search><sort><creationdate>202407</creationdate><title>TiO2 nanotubes with customized diameters for local drug delivery systems</title><author>Miyabe, Sayaka ; Fujinaga, Yushi ; Tsuchiya, Hiroaki ; Fujimoto, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n2705-8154e260fa11b345a92504d5c1c862e69014c4558b190828cf48c1cbbd08a6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodization</topic><topic>Customization</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>local drug delivery system</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>oxide nanotubes</topic><topic>Storage capacity</topic><topic>TiO2 nanotubes</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyabe, Sayaka</creatorcontrib><creatorcontrib>Fujinaga, Yushi</creatorcontrib><creatorcontrib>Tsuchiya, Hiroaki</creatorcontrib><creatorcontrib>Fujimoto, Shinji</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyabe, Sayaka</au><au>Fujinaga, Yushi</au><au>Tsuchiya, Hiroaki</au><au>Fujimoto, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 nanotubes with customized diameters for local drug delivery systems</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><date>2024-07</date><risdate>2024</risdate><volume>112</volume><issue>7</issue><spage>e35445</spage><epage>n/a</epage><pages>e35445-n/a</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two‐diameter]), and a 20–60 V swept potential (49 nm [full‐tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two‐diameter), 49 nm (full‐tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two‐diameter) and 49 nm (full‐tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two‐diameter) sample. Thus, 50 nm (two‐diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two‐diameter and full‐tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/jbm.b.35445</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7787-4190</orcidid><orcidid>https://orcid.org/0009-0009-3325-3577</orcidid><orcidid>https://orcid.org/0000-0001-5619-0139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2024-07, Vol.112 (7), p.e35445-n/a |
issn | 1552-4973 1552-4981 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_3074134337 |
source | Wiley Journals |
subjects | anodization Customization Drug delivery Drug delivery systems local drug delivery system Nanotechnology Nanotubes oxide nanotubes Storage capacity TiO2 nanotubes Titanium dioxide |
title | TiO2 nanotubes with customized diameters for local drug delivery systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20nanotubes%20with%20customized%20diameters%20for%20local%20drug%20delivery%20systems&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Miyabe,%20Sayaka&rft.date=2024-07&rft.volume=112&rft.issue=7&rft.spage=e35445&rft.epage=n/a&rft.pages=e35445-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35445&rft_dat=%3Cproquest_wiley%3E3074134337%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080610905&rft_id=info:pmid/&rfr_iscdi=true |