3D printing redefines microneedle fabrication for transdermal drug delivery
Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a gro...
Gespeichert in:
Veröffentlicht in: | Biomedical engineering letters 2024-07, Vol.14 (4), p.737-746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 746 |
---|---|
container_issue | 4 |
container_start_page | 737 |
container_title | Biomedical engineering letters |
container_volume | 14 |
creator | Song, Ki-Young Zhang, Wen-Jun Behzadfar, Mahtab |
description | Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a groundbreaking and cost-effective method for producing MNs utilizing fused deposition modeling (FDM) 3D printing technology to enhance transdermal drug delivery. The proposed fabrication process involves the elongation of molten polylactic acid (PLA) filaments to create meticulously designed conoid and neiloid MNs with smooth surfaces. This study underscores the critical role of printing parameters, particularly extrusion length and printing speed, in determining the shape of the MNs. Notably, the conoid-shaped MNs exhibit exceptional skin-penetrating capabilities. In order to evaluate their effectiveness, the MNs were tested on a polydimethylsiloxane (PDMS) skin model for skin penetration. The results highlight the high potential of 3D-printed MNs for transdermal drug administration. This novel approach capitalizes on the benefits of 3D printing technology to fabricate MNs that hold the promise of transforming painless drug administration for a variety of medical applications. |
doi_str_mv | 10.1007/s13534-024-00368-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074133919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072773651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a3d3d98bdf5ab3cd7673efccaa3f3ac72c019efef4aca6e66a9f5f397ad1f7ad3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMojozzAi6k4MZNNemZps1SxisOuFFwF9LkZOjQy5i0wry9qR1HcGEgl8V3_pzzEXLG6BWjNLv2DFKYxzQJmwLPY3ZAThIqIBZ5-n64f_N8Qmber2lYKUsFwDGZQC7mPGdwQp7hNtq4sunKZhU5NGjLBn1Ul9q1DaKpMLKqcKVWXdk2kW1d1DnVeIOuVlVkXL-KDFblJ7rtKTmyqvI4291T8nZ_97p4jJcvD0-Lm2WsIeFdrMCAEXlhbKoK0CbjGaDVWimwoHSWaMoEWrRzpRVHzpWwqQWRKcNsOGBKLsfcjWs_evSdrEuvsapUg23vJdBszgAEEwG9-IOu2941obuBSrIMeMoClYxUGNp7h1YGJbVyW8moHGzL0bYMtuW3bTkUne-i-6JGsy_5cRsAGAE_CF6h-_37n9gvKUyL2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072773651</pqid></control><display><type>article</type><title>3D printing redefines microneedle fabrication for transdermal drug delivery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Ki-Young ; Zhang, Wen-Jun ; Behzadfar, Mahtab</creator><creatorcontrib>Song, Ki-Young ; Zhang, Wen-Jun ; Behzadfar, Mahtab</creatorcontrib><description>Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a groundbreaking and cost-effective method for producing MNs utilizing fused deposition modeling (FDM) 3D printing technology to enhance transdermal drug delivery. The proposed fabrication process involves the elongation of molten polylactic acid (PLA) filaments to create meticulously designed conoid and neiloid MNs with smooth surfaces. This study underscores the critical role of printing parameters, particularly extrusion length and printing speed, in determining the shape of the MNs. Notably, the conoid-shaped MNs exhibit exceptional skin-penetrating capabilities. In order to evaluate their effectiveness, the MNs were tested on a polydimethylsiloxane (PDMS) skin model for skin penetration. The results highlight the high potential of 3D-printed MNs for transdermal drug administration. This novel approach capitalizes on the benefits of 3D printing technology to fabricate MNs that hold the promise of transforming painless drug administration for a variety of medical applications.</description><identifier>ISSN: 2093-9868</identifier><identifier>ISSN: 2093-985X</identifier><identifier>EISSN: 2093-985X</identifier><identifier>DOI: 10.1007/s13534-024-00368-1</identifier><identifier>PMID: 38946813</identifier><language>eng</language><publisher>Korea: The Korean Society of Medical and Biological Engineering</publisher><subject>3-D printers ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Drug delivery ; Engineering ; Extrusion rate ; Filaments ; Fused deposition modeling ; Medical and Radiation Physics ; Needles ; Original Article ; Polydimethylsiloxane ; Polylactic acid ; Production methods ; Skin tests ; Three dimensional printing ; Transdermal medication</subject><ispartof>Biomedical engineering letters, 2024-07, Vol.14 (4), p.737-746</ispartof><rights>Korean Society of Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a3d3d98bdf5ab3cd7673efccaa3f3ac72c019efef4aca6e66a9f5f397ad1f7ad3</cites><orcidid>0000-0001-7148-8830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13534-024-00368-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13534-024-00368-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38946813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Ki-Young</creatorcontrib><creatorcontrib>Zhang, Wen-Jun</creatorcontrib><creatorcontrib>Behzadfar, Mahtab</creatorcontrib><title>3D printing redefines microneedle fabrication for transdermal drug delivery</title><title>Biomedical engineering letters</title><addtitle>Biomed. Eng. Lett</addtitle><addtitle>Biomed Eng Lett</addtitle><description>Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a groundbreaking and cost-effective method for producing MNs utilizing fused deposition modeling (FDM) 3D printing technology to enhance transdermal drug delivery. The proposed fabrication process involves the elongation of molten polylactic acid (PLA) filaments to create meticulously designed conoid and neiloid MNs with smooth surfaces. This study underscores the critical role of printing parameters, particularly extrusion length and printing speed, in determining the shape of the MNs. Notably, the conoid-shaped MNs exhibit exceptional skin-penetrating capabilities. In order to evaluate their effectiveness, the MNs were tested on a polydimethylsiloxane (PDMS) skin model for skin penetration. The results highlight the high potential of 3D-printed MNs for transdermal drug administration. This novel approach capitalizes on the benefits of 3D printing technology to fabricate MNs that hold the promise of transforming painless drug administration for a variety of medical applications.</description><subject>3-D printers</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Drug delivery</subject><subject>Engineering</subject><subject>Extrusion rate</subject><subject>Filaments</subject><subject>Fused deposition modeling</subject><subject>Medical and Radiation Physics</subject><subject>Needles</subject><subject>Original Article</subject><subject>Polydimethylsiloxane</subject><subject>Polylactic acid</subject><subject>Production methods</subject><subject>Skin tests</subject><subject>Three dimensional printing</subject><subject>Transdermal medication</subject><issn>2093-9868</issn><issn>2093-985X</issn><issn>2093-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMojozzAi6k4MZNNemZps1SxisOuFFwF9LkZOjQy5i0wry9qR1HcGEgl8V3_pzzEXLG6BWjNLv2DFKYxzQJmwLPY3ZAThIqIBZ5-n64f_N8Qmber2lYKUsFwDGZQC7mPGdwQp7hNtq4sunKZhU5NGjLBn1Ul9q1DaKpMLKqcKVWXdk2kW1d1DnVeIOuVlVkXL-KDFblJ7rtKTmyqvI4291T8nZ_97p4jJcvD0-Lm2WsIeFdrMCAEXlhbKoK0CbjGaDVWimwoHSWaMoEWrRzpRVHzpWwqQWRKcNsOGBKLsfcjWs_evSdrEuvsapUg23vJdBszgAEEwG9-IOu2941obuBSrIMeMoClYxUGNp7h1YGJbVyW8moHGzL0bYMtuW3bTkUne-i-6JGsy_5cRsAGAE_CF6h-_37n9gvKUyL2g</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Song, Ki-Young</creator><creator>Zhang, Wen-Jun</creator><creator>Behzadfar, Mahtab</creator><general>The Korean Society of Medical and Biological Engineering</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7148-8830</orcidid></search><sort><creationdate>20240701</creationdate><title>3D printing redefines microneedle fabrication for transdermal drug delivery</title><author>Song, Ki-Young ; Zhang, Wen-Jun ; Behzadfar, Mahtab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a3d3d98bdf5ab3cd7673efccaa3f3ac72c019efef4aca6e66a9f5f397ad1f7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Drug delivery</topic><topic>Engineering</topic><topic>Extrusion rate</topic><topic>Filaments</topic><topic>Fused deposition modeling</topic><topic>Medical and Radiation Physics</topic><topic>Needles</topic><topic>Original Article</topic><topic>Polydimethylsiloxane</topic><topic>Polylactic acid</topic><topic>Production methods</topic><topic>Skin tests</topic><topic>Three dimensional printing</topic><topic>Transdermal medication</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Ki-Young</creatorcontrib><creatorcontrib>Zhang, Wen-Jun</creatorcontrib><creatorcontrib>Behzadfar, Mahtab</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ki-Young</au><au>Zhang, Wen-Jun</au><au>Behzadfar, Mahtab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing redefines microneedle fabrication for transdermal drug delivery</atitle><jtitle>Biomedical engineering letters</jtitle><stitle>Biomed. Eng. Lett</stitle><addtitle>Biomed Eng Lett</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>737</spage><epage>746</epage><pages>737-746</pages><issn>2093-9868</issn><issn>2093-985X</issn><eissn>2093-985X</eissn><abstract>Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a groundbreaking and cost-effective method for producing MNs utilizing fused deposition modeling (FDM) 3D printing technology to enhance transdermal drug delivery. The proposed fabrication process involves the elongation of molten polylactic acid (PLA) filaments to create meticulously designed conoid and neiloid MNs with smooth surfaces. This study underscores the critical role of printing parameters, particularly extrusion length and printing speed, in determining the shape of the MNs. Notably, the conoid-shaped MNs exhibit exceptional skin-penetrating capabilities. In order to evaluate their effectiveness, the MNs were tested on a polydimethylsiloxane (PDMS) skin model for skin penetration. The results highlight the high potential of 3D-printed MNs for transdermal drug administration. This novel approach capitalizes on the benefits of 3D printing technology to fabricate MNs that hold the promise of transforming painless drug administration for a variety of medical applications.</abstract><cop>Korea</cop><pub>The Korean Society of Medical and Biological Engineering</pub><pmid>38946813</pmid><doi>10.1007/s13534-024-00368-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7148-8830</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2093-9868 |
ispartof | Biomedical engineering letters, 2024-07, Vol.14 (4), p.737-746 |
issn | 2093-9868 2093-985X 2093-985X |
language | eng |
recordid | cdi_proquest_miscellaneous_3074133919 |
source | SpringerLink Journals - AutoHoldings |
subjects | 3-D printers Biological and Medical Physics Biomedical Engineering and Bioengineering Biomedicine Biophysics Drug delivery Engineering Extrusion rate Filaments Fused deposition modeling Medical and Radiation Physics Needles Original Article Polydimethylsiloxane Polylactic acid Production methods Skin tests Three dimensional printing Transdermal medication |
title | 3D printing redefines microneedle fabrication for transdermal drug delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20redefines%20microneedle%20fabrication%20for%20transdermal%20drug%20delivery&rft.jtitle=Biomedical%20engineering%20letters&rft.au=Song,%20Ki-Young&rft.date=2024-07-01&rft.volume=14&rft.issue=4&rft.spage=737&rft.epage=746&rft.pages=737-746&rft.issn=2093-9868&rft.eissn=2093-985X&rft_id=info:doi/10.1007/s13534-024-00368-1&rft_dat=%3Cproquest_cross%3E3072773651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072773651&rft_id=info:pmid/38946813&rfr_iscdi=true |