On convergence properties of the brain-state-in-a-convex-domain

Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-10, Vol.178, p.106481, Article 106481
Hauptverfasser: Di Marco, Mauro, Forti, Mauro, Pancioni, Luca, Tesi, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106481
container_title Neural networks
container_volume 178
creator Di Marco, Mauro
Forti, Mauro
Pancioni, Luca
Tesi, Alberto
description Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.
doi_str_mv 10.1016/j.neunet.2024.106481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074133339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024004052</els_id><sourcerecordid>3074133339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-f47e22f02d1324de428fc8adfde22a9c95e473b331d6ec1c49ae6c5f4005d4ff3</originalsourceid><addsrcrecordid>eNp9kMtOAyEUQInR2Pr4A2Nm6YbKa2aYjcY0vpIm3eiaULgoTTtTgWn076VOdSkbyOXc10HogpIJJbS6Xk5a6FtIE0aYyKFKSHqAxlTWDWa1ZIdoTGTDcUUkGaGTGJeEkEoKfoxGXDaipLQeo9t5W5iu3UJ4g9ZAsQndBkLyEIvOFekdikXQvsUx6QQ4PzT-wT-x7db54wwdOb2KcL6_T9Hrw_3L9AnP5o_P07sZNkzQhJ2ogTFHmKWcCQuCSWekts7msG5MU4Ko-YJzaisw1IhGQ2VKJwgprXCOn6KroW4e8KOHmNTaRwOrlW6h66PipBaU59NkVAyoCV2MAZzaBL_W4UtRonbq1FIN6tROnRrU5bTLfYd-sQb7l_TrKgM3AwB5z62HoKLxO2nWBzBJ2c7_3-Ebv6mBfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074133339</pqid></control><display><type>article</type><title>On convergence properties of the brain-state-in-a-convex-domain</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</creator><creatorcontrib>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</creatorcontrib><description>Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.</description><identifier>ISSN: 0893-6080</identifier><identifier>ISSN: 1879-2782</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.106481</identifier><identifier>PMID: 38945117</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Brain-State-in-a-Box neural network ; Convergence ; Discrete-time neural network ; LaSalle’s invariance principle</subject><ispartof>Neural networks, 2024-10, Vol.178, p.106481, Article 106481</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-f47e22f02d1324de428fc8adfde22a9c95e473b331d6ec1c49ae6c5f4005d4ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2024.106481$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38945117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Marco, Mauro</creatorcontrib><creatorcontrib>Forti, Mauro</creatorcontrib><creatorcontrib>Pancioni, Luca</creatorcontrib><creatorcontrib>Tesi, Alberto</creatorcontrib><title>On convergence properties of the brain-state-in-a-convex-domain</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.</description><subject>Brain-State-in-a-Box neural network</subject><subject>Convergence</subject><subject>Discrete-time neural network</subject><subject>LaSalle’s invariance principle</subject><issn>0893-6080</issn><issn>1879-2782</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUQInR2Pr4A2Nm6YbKa2aYjcY0vpIm3eiaULgoTTtTgWn076VOdSkbyOXc10HogpIJJbS6Xk5a6FtIE0aYyKFKSHqAxlTWDWa1ZIdoTGTDcUUkGaGTGJeEkEoKfoxGXDaipLQeo9t5W5iu3UJ4g9ZAsQndBkLyEIvOFekdikXQvsUx6QQ4PzT-wT-x7db54wwdOb2KcL6_T9Hrw_3L9AnP5o_P07sZNkzQhJ2ogTFHmKWcCQuCSWekts7msG5MU4Ko-YJzaisw1IhGQ2VKJwgprXCOn6KroW4e8KOHmNTaRwOrlW6h66PipBaU59NkVAyoCV2MAZzaBL_W4UtRonbq1FIN6tROnRrU5bTLfYd-sQb7l_TrKgM3AwB5z62HoKLxO2nWBzBJ2c7_3-Ebv6mBfw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Di Marco, Mauro</creator><creator>Forti, Mauro</creator><creator>Pancioni, Luca</creator><creator>Tesi, Alberto</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>On convergence properties of the brain-state-in-a-convex-domain</title><author>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-f47e22f02d1324de428fc8adfde22a9c95e473b331d6ec1c49ae6c5f4005d4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain-State-in-a-Box neural network</topic><topic>Convergence</topic><topic>Discrete-time neural network</topic><topic>LaSalle’s invariance principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marco, Mauro</creatorcontrib><creatorcontrib>Forti, Mauro</creatorcontrib><creatorcontrib>Pancioni, Luca</creatorcontrib><creatorcontrib>Tesi, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marco, Mauro</au><au>Forti, Mauro</au><au>Pancioni, Luca</au><au>Tesi, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On convergence properties of the brain-state-in-a-convex-domain</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>178</volume><spage>106481</spage><pages>106481-</pages><artnum>106481</artnum><issn>0893-6080</issn><issn>1879-2782</issn><eissn>1879-2782</eissn><abstract>Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38945117</pmid><doi>10.1016/j.neunet.2024.106481</doi></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-10, Vol.178, p.106481, Article 106481
issn 0893-6080
1879-2782
1879-2782
language eng
recordid cdi_proquest_miscellaneous_3074133339
source Elsevier ScienceDirect Journals Complete
subjects Brain-State-in-a-Box neural network
Convergence
Discrete-time neural network
LaSalle’s invariance principle
title On convergence properties of the brain-state-in-a-convex-domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20convergence%20properties%20of%20the%20brain-state-in-a-convex-domain&rft.jtitle=Neural%20networks&rft.au=Di%20Marco,%20Mauro&rft.date=2024-10-01&rft.volume=178&rft.spage=106481&rft.pages=106481-&rft.artnum=106481&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.106481&rft_dat=%3Cproquest_cross%3E3074133339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074133339&rft_id=info:pmid/38945117&rft_els_id=S0893608024004052&rfr_iscdi=true