On convergence properties of the brain-state-in-a-convex-domain
Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a...
Gespeichert in:
Veröffentlicht in: | Neural networks 2024-10, Vol.178, p.106481, Article 106481 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106481 |
container_title | Neural networks |
container_volume | 178 |
creator | Di Marco, Mauro Forti, Mauro Pancioni, Luca Tesi, Alberto |
description | Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality. |
doi_str_mv | 10.1016/j.neunet.2024.106481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074133339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024004052</els_id><sourcerecordid>3074133339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-f47e22f02d1324de428fc8adfde22a9c95e473b331d6ec1c49ae6c5f4005d4ff3</originalsourceid><addsrcrecordid>eNp9kMtOAyEUQInR2Pr4A2Nm6YbKa2aYjcY0vpIm3eiaULgoTTtTgWn076VOdSkbyOXc10HogpIJJbS6Xk5a6FtIE0aYyKFKSHqAxlTWDWa1ZIdoTGTDcUUkGaGTGJeEkEoKfoxGXDaipLQeo9t5W5iu3UJ4g9ZAsQndBkLyEIvOFekdikXQvsUx6QQ4PzT-wT-x7db54wwdOb2KcL6_T9Hrw_3L9AnP5o_P07sZNkzQhJ2ogTFHmKWcCQuCSWekts7msG5MU4Ko-YJzaisw1IhGQ2VKJwgprXCOn6KroW4e8KOHmNTaRwOrlW6h66PipBaU59NkVAyoCV2MAZzaBL_W4UtRonbq1FIN6tROnRrU5bTLfYd-sQb7l_TrKgM3AwB5z62HoKLxO2nWBzBJ2c7_3-Ebv6mBfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074133339</pqid></control><display><type>article</type><title>On convergence properties of the brain-state-in-a-convex-domain</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</creator><creatorcontrib>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</creatorcontrib><description>Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.</description><identifier>ISSN: 0893-6080</identifier><identifier>ISSN: 1879-2782</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.106481</identifier><identifier>PMID: 38945117</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Brain-State-in-a-Box neural network ; Convergence ; Discrete-time neural network ; LaSalle’s invariance principle</subject><ispartof>Neural networks, 2024-10, Vol.178, p.106481, Article 106481</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-f47e22f02d1324de428fc8adfde22a9c95e473b331d6ec1c49ae6c5f4005d4ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2024.106481$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38945117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Marco, Mauro</creatorcontrib><creatorcontrib>Forti, Mauro</creatorcontrib><creatorcontrib>Pancioni, Luca</creatorcontrib><creatorcontrib>Tesi, Alberto</creatorcontrib><title>On convergence properties of the brain-state-in-a-convex-domain</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.</description><subject>Brain-State-in-a-Box neural network</subject><subject>Convergence</subject><subject>Discrete-time neural network</subject><subject>LaSalle’s invariance principle</subject><issn>0893-6080</issn><issn>1879-2782</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUQInR2Pr4A2Nm6YbKa2aYjcY0vpIm3eiaULgoTTtTgWn076VOdSkbyOXc10HogpIJJbS6Xk5a6FtIE0aYyKFKSHqAxlTWDWa1ZIdoTGTDcUUkGaGTGJeEkEoKfoxGXDaipLQeo9t5W5iu3UJ4g9ZAsQndBkLyEIvOFekdikXQvsUx6QQ4PzT-wT-x7db54wwdOb2KcL6_T9Hrw_3L9AnP5o_P07sZNkzQhJ2ogTFHmKWcCQuCSWekts7msG5MU4Ko-YJzaisw1IhGQ2VKJwgprXCOn6KroW4e8KOHmNTaRwOrlW6h66PipBaU59NkVAyoCV2MAZzaBL_W4UtRonbq1FIN6tROnRrU5bTLfYd-sQb7l_TrKgM3AwB5z62HoKLxO2nWBzBJ2c7_3-Ebv6mBfw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Di Marco, Mauro</creator><creator>Forti, Mauro</creator><creator>Pancioni, Luca</creator><creator>Tesi, Alberto</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>On convergence properties of the brain-state-in-a-convex-domain</title><author>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-f47e22f02d1324de428fc8adfde22a9c95e473b331d6ec1c49ae6c5f4005d4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain-State-in-a-Box neural network</topic><topic>Convergence</topic><topic>Discrete-time neural network</topic><topic>LaSalle’s invariance principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marco, Mauro</creatorcontrib><creatorcontrib>Forti, Mauro</creatorcontrib><creatorcontrib>Pancioni, Luca</creatorcontrib><creatorcontrib>Tesi, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marco, Mauro</au><au>Forti, Mauro</au><au>Pancioni, Luca</au><au>Tesi, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On convergence properties of the brain-state-in-a-convex-domain</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>178</volume><spage>106481</spage><pages>106481-</pages><artnum>106481</artnum><issn>0893-6080</issn><issn>1879-2782</issn><eissn>1879-2782</eissn><abstract>Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle’s Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki–Cheney–Goldstein inequality.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38945117</pmid><doi>10.1016/j.neunet.2024.106481</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2024-10, Vol.178, p.106481, Article 106481 |
issn | 0893-6080 1879-2782 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_3074133339 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Brain-State-in-a-Box neural network Convergence Discrete-time neural network LaSalle’s invariance principle |
title | On convergence properties of the brain-state-in-a-convex-domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20convergence%20properties%20of%20the%20brain-state-in-a-convex-domain&rft.jtitle=Neural%20networks&rft.au=Di%20Marco,%20Mauro&rft.date=2024-10-01&rft.volume=178&rft.spage=106481&rft.pages=106481-&rft.artnum=106481&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.106481&rft_dat=%3Cproquest_cross%3E3074133339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074133339&rft_id=info:pmid/38945117&rft_els_id=S0893608024004052&rfr_iscdi=true |