A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules

Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2024-11, Vol.45 (29), p.2431-2445
Hauptverfasser: King, Nathanael J., LeBlanc, Ian D., Brown, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 29
container_start_page 2431
container_title Journal of computational chemistry
container_volume 45
creator King, Nathanael J.
LeBlanc, Ian D.
Brown, Alex
description Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low‐energy diversity‐enhanced variant on CREST, or LEDE‐CREST. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE‐CREST. Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach.
doi_str_mv 10.1002/jcc.27458
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073712494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111489181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2788-ad7d58a957ad2febc52bd0ba575ceefcd57b4e4e349e9147a47bbe805b21a3eb3</originalsourceid><addsrcrecordid>eNp10EFLHDEYxvEgim6tB7-ABLzYw2gySTbJUcZtVSyC3YK3kGTe0VkyE01mtH57x671IPT0Xn48vPwR2qfkmBJSnqy8Py4lF2oDzSjR80IrebuJZoTqslBzQXfQl5xXhBAm5nwb7TClOZ9LNkPLU_xkU2v7AcceD_eAq5vFryVufy7PsA13MbXDfYebmHAfex-fbIDJ-jDmAVLGscFNgD-tC4C7GMCPAfJXtNXYkGHv_e6i398Xy-q8uLr-cVGdXhW-lEoVtpa1UFYLaeuyAedF6WrirJDCAzS-FtJx4MC4Bk25tFw6B4oIV1LLwLFddLTefUjxcYQ8mK7NHkKwPcQxG0Ykk7Tkmk_08BNdxTH103eGUUq50lTRSX1bK59izgka85DazqYXQ4l5S22m1OZv6skevC-OroP6Q_5rO4GTNXhuA7z8f8lcVtV68hWM6ofu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111489181</pqid></control><display><type>article</type><title>A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules</title><source>Access via Wiley Online Library</source><creator>King, Nathanael J. ; LeBlanc, Ian D. ; Brown, Alex</creator><creatorcontrib>King, Nathanael J. ; LeBlanc, Ian D. ; Brown, Alex</creatorcontrib><description>Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low‐energy diversity‐enhanced variant on CREST, or LEDE‐CREST. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE‐CREST. Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach.</description><identifier>ISSN: 0192-8651</identifier><identifier>ISSN: 1096-987X</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27458</identifier><identifier>PMID: 38944673</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>algorithm ; Algorithms ; Clusters ; Computational chemistry ; conformer search ; degrees of freedom ; ensemble generation ; noncovalent interactions ; Software</subject><ispartof>Journal of computational chemistry, 2024-11, Vol.45 (29), p.2431-2445</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC.</rights><rights>2024 The Author(s). Journal of Computational Chemistry published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2788-ad7d58a957ad2febc52bd0ba575ceefcd57b4e4e349e9147a47bbe805b21a3eb3</cites><orcidid>0000-0001-6734-5300 ; 0000-0002-5384-9222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.27458$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.27458$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38944673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Nathanael J.</creatorcontrib><creatorcontrib>LeBlanc, Ian D.</creatorcontrib><creatorcontrib>Brown, Alex</creatorcontrib><title>A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low‐energy diversity‐enhanced variant on CREST, or LEDE‐CREST. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE‐CREST. Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach.</description><subject>algorithm</subject><subject>Algorithms</subject><subject>Clusters</subject><subject>Computational chemistry</subject><subject>conformer search</subject><subject>degrees of freedom</subject><subject>ensemble generation</subject><subject>noncovalent interactions</subject><subject>Software</subject><issn>0192-8651</issn><issn>1096-987X</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10EFLHDEYxvEgim6tB7-ABLzYw2gySTbJUcZtVSyC3YK3kGTe0VkyE01mtH57x671IPT0Xn48vPwR2qfkmBJSnqy8Py4lF2oDzSjR80IrebuJZoTqslBzQXfQl5xXhBAm5nwb7TClOZ9LNkPLU_xkU2v7AcceD_eAq5vFryVufy7PsA13MbXDfYebmHAfex-fbIDJ-jDmAVLGscFNgD-tC4C7GMCPAfJXtNXYkGHv_e6i398Xy-q8uLr-cVGdXhW-lEoVtpa1UFYLaeuyAedF6WrirJDCAzS-FtJx4MC4Bk25tFw6B4oIV1LLwLFddLTefUjxcYQ8mK7NHkKwPcQxG0Ykk7Tkmk_08BNdxTH103eGUUq50lTRSX1bK59izgka85DazqYXQ4l5S22m1OZv6skevC-OroP6Q_5rO4GTNXhuA7z8f8lcVtV68hWM6ofu</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>King, Nathanael J.</creator><creator>LeBlanc, Ian D.</creator><creator>Brown, Alex</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6734-5300</orcidid><orcidid>https://orcid.org/0000-0002-5384-9222</orcidid></search><sort><creationdate>20241105</creationdate><title>A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules</title><author>King, Nathanael J. ; LeBlanc, Ian D. ; Brown, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2788-ad7d58a957ad2febc52bd0ba575ceefcd57b4e4e349e9147a47bbe805b21a3eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algorithm</topic><topic>Algorithms</topic><topic>Clusters</topic><topic>Computational chemistry</topic><topic>conformer search</topic><topic>degrees of freedom</topic><topic>ensemble generation</topic><topic>noncovalent interactions</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Nathanael J.</creatorcontrib><creatorcontrib>LeBlanc, Ian D.</creatorcontrib><creatorcontrib>Brown, Alex</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Nathanael J.</au><au>LeBlanc, Ian D.</au><au>Brown, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>45</volume><issue>29</issue><spage>2431</spage><epage>2445</epage><pages>2431-2445</pages><issn>0192-8651</issn><issn>1096-987X</issn><eissn>1096-987X</eissn><abstract>Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low‐energy diversity‐enhanced variant on CREST, or LEDE‐CREST. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE‐CREST. Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer‐rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. As with CREST, the energies are evaluated using the semiempirical GFN2‐xTB extended tight binding approach.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38944673</pmid><doi>10.1002/jcc.27458</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6734-5300</orcidid><orcidid>https://orcid.org/0000-0002-5384-9222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2024-11, Vol.45 (29), p.2431-2445
issn 0192-8651
1096-987X
1096-987X
language eng
recordid cdi_proquest_miscellaneous_3073712494
source Access via Wiley Online Library
subjects algorithm
Algorithms
Clusters
Computational chemistry
conformer search
degrees of freedom
ensemble generation
noncovalent interactions
Software
title A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variant%20on%20the%20CREST%20iMTD%20algorithm%20for%20noncovalent%20clusters%20of%20flexible%20molecules&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=King,%20Nathanael%20J.&rft.date=2024-11-05&rft.volume=45&rft.issue=29&rft.spage=2431&rft.epage=2445&rft.pages=2431-2445&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27458&rft_dat=%3Cproquest_cross%3E3111489181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111489181&rft_id=info:pmid/38944673&rfr_iscdi=true