Reversible Solar Heating and Radiative Cooling Devices via Mechanically Guided Assembly of 3D Macro/Microstructures

Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high‐performance thermal management can be achieved using these eco‐friendly me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (39), p.e2400930-n/a
Hauptverfasser: Lee, Su Eon, Seo, Junyong, Kim, Simon, Park, Jun Hyun, Jin, Ho Jun, Ko, Janghun, Kim, Jang Hwan, Kang, Heemin, Kim, Jin‐Tae, Lee, Heon, Lee, Bong Jae, Kim, Bong Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e2400930
container_title Advanced materials (Weinheim)
container_volume 36
creator Lee, Su Eon
Seo, Junyong
Kim, Simon
Park, Jun Hyun
Jin, Ho Jun
Ko, Janghun
Kim, Jang Hwan
Kang, Heemin
Kim, Jin‐Tae
Lee, Heon
Lee, Bong Jae
Kim, Bong Hoon
description Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high‐performance thermal management can be achieved using these eco‐friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single‐mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated. The fabricated devices exhibit the following properties: i) The devices reversibly change between solar heating and radiative cooling under uniaxial strain, called dual‐mode actuation. ii) The 3D platforms in the devices can use rigid/soft materials for functional layers owing to the optimized designs. iii) The devices can be used for dual‐mode thermal management on a macro/microscale. The devices use black paint‐coated polyimide (PI) films as solar absorbers with multilayered films comprising thin layers of polydimethylsiloxane/silver/PI, achieving heating and cooling temperatures of 59.5 and −11.9 °C, respectively. Moreover, mode changes according to the angle of the 3D structures are demonstrated and the heating/cooling performance with skin, glass, steel, aluminum, copper, and PI substrates is investigated. Reversible solar heating and radiative cooling devices employing mechanically guided 3D architectures demonstrate dual‐mode actuation with uniaxial strain. These devices, which are applicable on macro/microscales, utilize optimized 3D platforms that accommodate both rigid and soft materials. Heating/cooling layers achieve heating/cooling temperatures of 59.5 and −11.9 °C, respectively. The fabricated devices exhibit effective heating/cooling on diverse surfaces.
doi_str_mv 10.1002/adma.202400930
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073234896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073234896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2350-a0fd521fb108e4ce3d376bff978969dd354b97f5ed1fcec7fd1274563e2330083</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWD-ungNevGw7SfajeyytVsEiVD2HbDLRSLqrSbfSf29KRcGLlxlmeN5hZl5CLhgMGQAfKbNSQw48B6gFHJABKzjLcqiLQzJIrSKry3x8TE5ifIPElFAOSFziBkN0jUf62HkV6C2qtWtfqGoNXSrjUrVBOu06v-vOcOM0Rrpxii5Qv6rWaeX9ls57Z9DQSYy4alLdWSpmdKF06EYLl2Jch16v-4DxjBxZ5SOef-dT8nxz_TS9ze4f5nfTyX2muSggU2BNusA2DMaYaxRGVGVjbV2N67I2RhR5U1e2QMOsRl1Zw3iVF6VALgTAWJySq_3c99B99BjXcuWiRu9Vi10fpYBKcJGnaQm9_IO-dX1o03ZSMAYcyvS7RA331O6cGNDK9-BWKmwlA7nzQO48kD8eJEG9F3w6j9t_aDmZLSa_2i8NWort</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110206964</pqid></control><display><type>article</type><title>Reversible Solar Heating and Radiative Cooling Devices via Mechanically Guided Assembly of 3D Macro/Microstructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Su Eon ; Seo, Junyong ; Kim, Simon ; Park, Jun Hyun ; Jin, Ho Jun ; Ko, Janghun ; Kim, Jang Hwan ; Kang, Heemin ; Kim, Jin‐Tae ; Lee, Heon ; Lee, Bong Jae ; Kim, Bong Hoon</creator><creatorcontrib>Lee, Su Eon ; Seo, Junyong ; Kim, Simon ; Park, Jun Hyun ; Jin, Ho Jun ; Ko, Janghun ; Kim, Jang Hwan ; Kang, Heemin ; Kim, Jin‐Tae ; Lee, Heon ; Lee, Bong Jae ; Kim, Bong Hoon</creatorcontrib><description>Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high‐performance thermal management can be achieved using these eco‐friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single‐mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated. The fabricated devices exhibit the following properties: i) The devices reversibly change between solar heating and radiative cooling under uniaxial strain, called dual‐mode actuation. ii) The 3D platforms in the devices can use rigid/soft materials for functional layers owing to the optimized designs. iii) The devices can be used for dual‐mode thermal management on a macro/microscale. The devices use black paint‐coated polyimide (PI) films as solar absorbers with multilayered films comprising thin layers of polydimethylsiloxane/silver/PI, achieving heating and cooling temperatures of 59.5 and −11.9 °C, respectively. Moreover, mode changes according to the angle of the 3D structures are demonstrated and the heating/cooling performance with skin, glass, steel, aluminum, copper, and PI substrates is investigated. Reversible solar heating and radiative cooling devices employing mechanically guided 3D architectures demonstrate dual‐mode actuation with uniaxial strain. These devices, which are applicable on macro/microscales, utilize optimized 3D platforms that accommodate both rigid and soft materials. Heating/cooling layers achieve heating/cooling temperatures of 59.5 and −11.9 °C, respectively. The fabricated devices exhibit effective heating/cooling on diverse surfaces.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202400930</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Assembly ; Cooling ; Devices ; dual‐mode thermal management ; Energy consumption ; mechanical buckling processes ; Polydimethylsiloxane ; radiative cooling ; Seasonal variations ; Solar energy absorbers ; Solar heating ; solar thermal absorption ; Strain ; Substrates ; Thermal management ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2400930-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2350-a0fd521fb108e4ce3d376bff978969dd354b97f5ed1fcec7fd1274563e2330083</cites><orcidid>0000-0002-4610-0176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202400930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202400930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Su Eon</creatorcontrib><creatorcontrib>Seo, Junyong</creatorcontrib><creatorcontrib>Kim, Simon</creatorcontrib><creatorcontrib>Park, Jun Hyun</creatorcontrib><creatorcontrib>Jin, Ho Jun</creatorcontrib><creatorcontrib>Ko, Janghun</creatorcontrib><creatorcontrib>Kim, Jang Hwan</creatorcontrib><creatorcontrib>Kang, Heemin</creatorcontrib><creatorcontrib>Kim, Jin‐Tae</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Kim, Bong Hoon</creatorcontrib><title>Reversible Solar Heating and Radiative Cooling Devices via Mechanically Guided Assembly of 3D Macro/Microstructures</title><title>Advanced materials (Weinheim)</title><description>Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high‐performance thermal management can be achieved using these eco‐friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single‐mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated. The fabricated devices exhibit the following properties: i) The devices reversibly change between solar heating and radiative cooling under uniaxial strain, called dual‐mode actuation. ii) The 3D platforms in the devices can use rigid/soft materials for functional layers owing to the optimized designs. iii) The devices can be used for dual‐mode thermal management on a macro/microscale. The devices use black paint‐coated polyimide (PI) films as solar absorbers with multilayered films comprising thin layers of polydimethylsiloxane/silver/PI, achieving heating and cooling temperatures of 59.5 and −11.9 °C, respectively. Moreover, mode changes according to the angle of the 3D structures are demonstrated and the heating/cooling performance with skin, glass, steel, aluminum, copper, and PI substrates is investigated. Reversible solar heating and radiative cooling devices employing mechanically guided 3D architectures demonstrate dual‐mode actuation with uniaxial strain. These devices, which are applicable on macro/microscales, utilize optimized 3D platforms that accommodate both rigid and soft materials. Heating/cooling layers achieve heating/cooling temperatures of 59.5 and −11.9 °C, respectively. The fabricated devices exhibit effective heating/cooling on diverse surfaces.</description><subject>Actuation</subject><subject>Assembly</subject><subject>Cooling</subject><subject>Devices</subject><subject>dual‐mode thermal management</subject><subject>Energy consumption</subject><subject>mechanical buckling processes</subject><subject>Polydimethylsiloxane</subject><subject>radiative cooling</subject><subject>Seasonal variations</subject><subject>Solar energy absorbers</subject><subject>Solar heating</subject><subject>solar thermal absorption</subject><subject>Strain</subject><subject>Substrates</subject><subject>Thermal management</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWD-ungNevGw7SfajeyytVsEiVD2HbDLRSLqrSbfSf29KRcGLlxlmeN5hZl5CLhgMGQAfKbNSQw48B6gFHJABKzjLcqiLQzJIrSKry3x8TE5ifIPElFAOSFziBkN0jUf62HkV6C2qtWtfqGoNXSrjUrVBOu06v-vOcOM0Rrpxii5Qv6rWaeX9ls57Z9DQSYy4alLdWSpmdKF06EYLl2Jch16v-4DxjBxZ5SOef-dT8nxz_TS9ze4f5nfTyX2muSggU2BNusA2DMaYaxRGVGVjbV2N67I2RhR5U1e2QMOsRl1Zw3iVF6VALgTAWJySq_3c99B99BjXcuWiRu9Vi10fpYBKcJGnaQm9_IO-dX1o03ZSMAYcyvS7RA331O6cGNDK9-BWKmwlA7nzQO48kD8eJEG9F3w6j9t_aDmZLSa_2i8NWort</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee, Su Eon</creator><creator>Seo, Junyong</creator><creator>Kim, Simon</creator><creator>Park, Jun Hyun</creator><creator>Jin, Ho Jun</creator><creator>Ko, Janghun</creator><creator>Kim, Jang Hwan</creator><creator>Kang, Heemin</creator><creator>Kim, Jin‐Tae</creator><creator>Lee, Heon</creator><creator>Lee, Bong Jae</creator><creator>Kim, Bong Hoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4610-0176</orcidid></search><sort><creationdate>20240901</creationdate><title>Reversible Solar Heating and Radiative Cooling Devices via Mechanically Guided Assembly of 3D Macro/Microstructures</title><author>Lee, Su Eon ; Seo, Junyong ; Kim, Simon ; Park, Jun Hyun ; Jin, Ho Jun ; Ko, Janghun ; Kim, Jang Hwan ; Kang, Heemin ; Kim, Jin‐Tae ; Lee, Heon ; Lee, Bong Jae ; Kim, Bong Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2350-a0fd521fb108e4ce3d376bff978969dd354b97f5ed1fcec7fd1274563e2330083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Assembly</topic><topic>Cooling</topic><topic>Devices</topic><topic>dual‐mode thermal management</topic><topic>Energy consumption</topic><topic>mechanical buckling processes</topic><topic>Polydimethylsiloxane</topic><topic>radiative cooling</topic><topic>Seasonal variations</topic><topic>Solar energy absorbers</topic><topic>Solar heating</topic><topic>solar thermal absorption</topic><topic>Strain</topic><topic>Substrates</topic><topic>Thermal management</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Su Eon</creatorcontrib><creatorcontrib>Seo, Junyong</creatorcontrib><creatorcontrib>Kim, Simon</creatorcontrib><creatorcontrib>Park, Jun Hyun</creatorcontrib><creatorcontrib>Jin, Ho Jun</creatorcontrib><creatorcontrib>Ko, Janghun</creatorcontrib><creatorcontrib>Kim, Jang Hwan</creatorcontrib><creatorcontrib>Kang, Heemin</creatorcontrib><creatorcontrib>Kim, Jin‐Tae</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Kim, Bong Hoon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Su Eon</au><au>Seo, Junyong</au><au>Kim, Simon</au><au>Park, Jun Hyun</au><au>Jin, Ho Jun</au><au>Ko, Janghun</au><au>Kim, Jang Hwan</au><au>Kang, Heemin</au><au>Kim, Jin‐Tae</au><au>Lee, Heon</au><au>Lee, Bong Jae</au><au>Kim, Bong Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible Solar Heating and Radiative Cooling Devices via Mechanically Guided Assembly of 3D Macro/Microstructures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>39</issue><spage>e2400930</spage><epage>n/a</epage><pages>e2400930-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high‐performance thermal management can be achieved using these eco‐friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single‐mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated. The fabricated devices exhibit the following properties: i) The devices reversibly change between solar heating and radiative cooling under uniaxial strain, called dual‐mode actuation. ii) The 3D platforms in the devices can use rigid/soft materials for functional layers owing to the optimized designs. iii) The devices can be used for dual‐mode thermal management on a macro/microscale. The devices use black paint‐coated polyimide (PI) films as solar absorbers with multilayered films comprising thin layers of polydimethylsiloxane/silver/PI, achieving heating and cooling temperatures of 59.5 and −11.9 °C, respectively. Moreover, mode changes according to the angle of the 3D structures are demonstrated and the heating/cooling performance with skin, glass, steel, aluminum, copper, and PI substrates is investigated. Reversible solar heating and radiative cooling devices employing mechanically guided 3D architectures demonstrate dual‐mode actuation with uniaxial strain. These devices, which are applicable on macro/microscales, utilize optimized 3D platforms that accommodate both rigid and soft materials. Heating/cooling layers achieve heating/cooling temperatures of 59.5 and −11.9 °C, respectively. The fabricated devices exhibit effective heating/cooling on diverse surfaces.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202400930</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4610-0176</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2400930-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3073234896
source Wiley Online Library Journals Frontfile Complete
subjects Actuation
Assembly
Cooling
Devices
dual‐mode thermal management
Energy consumption
mechanical buckling processes
Polydimethylsiloxane
radiative cooling
Seasonal variations
Solar energy absorbers
Solar heating
solar thermal absorption
Strain
Substrates
Thermal management
Thin films
title Reversible Solar Heating and Radiative Cooling Devices via Mechanically Guided Assembly of 3D Macro/Microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20Solar%20Heating%20and%20Radiative%20Cooling%20Devices%20via%20Mechanically%20Guided%20Assembly%20of%203D%20Macro/Microstructures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lee,%20Su%20Eon&rft.date=2024-09-01&rft.volume=36&rft.issue=39&rft.spage=e2400930&rft.epage=n/a&rft.pages=e2400930-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202400930&rft_dat=%3Cproquest_cross%3E3073234896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110206964&rft_id=info:pmid/&rfr_iscdi=true