3D-printed Bi2Te3‑based Thermoelectric Generators for Energy Harvesting and Temperature Response

Thermoelectric generators (TEGs) are environmentally friendly energy harvesting technologies that hold great promise in the field of self-powered electronics and sensing. However, the current development of thermoelectric (TE) devices has largely lagged behind the development of thermoelectric mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (27), p.35353-35360
Hauptverfasser: Cui, Gong-Peng, Feng, Chang-Ping, Xu, Shao-Cun, Sun, Kai-Yin, Ji, Jin-Chao, Hou, Lei, Lan, Hong-Bo, Shang, Hong-Jing, Ding, Fa-Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35360
container_issue 27
container_start_page 35353
container_title ACS applied materials & interfaces
container_volume 16
creator Cui, Gong-Peng
Feng, Chang-Ping
Xu, Shao-Cun
Sun, Kai-Yin
Ji, Jin-Chao
Hou, Lei
Lan, Hong-Bo
Shang, Hong-Jing
Ding, Fa-Zhu
description Thermoelectric generators (TEGs) are environmentally friendly energy harvesting technologies that hold great promise in the field of self-powered electronics and sensing. However, the current development of thermoelectric (TE) devices has largely lagged behind the development of thermoelectric materials, especially in the preparation of thermoelectric components with customizable shapes and excellent properties, which largely limits their practical applications. These issues can be effectively addressed by using 3D printing technology. Here, we print multiple p-type thermoelectric legs (pins) consecutively with this simple technique, and the printed TEGs have excellent thermal potential (288 μV K–1 at room temperature) and excellent temperature response properties, which exhibited an output voltage of 127.94 mV at a temperature difference (ΔT) of 40 K. The 3D-printed thermoelectric generator enables the collection of thermal energy. In addition, the device has excellent temperature sensing characteristics, and this temperature signal to electrical signal conversion is very rapid, which enables temperature sensing alarms in a wide temperature domain. Combining these features, an energy harvesting and electrical alarm concept for home-scale applications is proposed, which is expected to provide a diverse research idea for the application of next-generation thermoelectric devices.
doi_str_mv 10.1021/acsami.4c07013
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073234861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073234861</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-bbcac2fc14a23076cfa980d04dd47dac2ed45410a6299913c76800664b2625c93</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQxhdRsFavnvcoQur-yyY5aq2tUBCknpfNZlJTkt24mwjefAVf0SdxS4unmY_5Zvjmh9A1JTNKGL3TJuiumQlDMkL5CZrQQogkZyk7_e-FOEcXIewIkZyRdIJK_pj0vrEDVPihYRvgv98_pQ5Rbt7Bdw5aMINvDF6CBa8H5wOunceLqLZfeKX9J4ShsVusbdyBrt-7Rg_4FULvbIBLdFbrNsDVsU7R29NiM18l65fl8_x-nWia8iEpS6MNqw0VmnGSSVPrIicVEVUlsiqOoBKpoERLVhQF5SaTeXxDipJJlpqCT9HN4W7v3ccYQ6muCQbaVltwY1DxKGdc5JJG6-3BGpmpnRu9jcEUJWoPUh1AqiNI_gfrTmiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073234861</pqid></control><display><type>article</type><title>3D-printed Bi2Te3‑based Thermoelectric Generators for Energy Harvesting and Temperature Response</title><source>American Chemical Society Journals</source><creator>Cui, Gong-Peng ; Feng, Chang-Ping ; Xu, Shao-Cun ; Sun, Kai-Yin ; Ji, Jin-Chao ; Hou, Lei ; Lan, Hong-Bo ; Shang, Hong-Jing ; Ding, Fa-Zhu</creator><creatorcontrib>Cui, Gong-Peng ; Feng, Chang-Ping ; Xu, Shao-Cun ; Sun, Kai-Yin ; Ji, Jin-Chao ; Hou, Lei ; Lan, Hong-Bo ; Shang, Hong-Jing ; Ding, Fa-Zhu</creatorcontrib><description>Thermoelectric generators (TEGs) are environmentally friendly energy harvesting technologies that hold great promise in the field of self-powered electronics and sensing. However, the current development of thermoelectric (TE) devices has largely lagged behind the development of thermoelectric materials, especially in the preparation of thermoelectric components with customizable shapes and excellent properties, which largely limits their practical applications. These issues can be effectively addressed by using 3D printing technology. Here, we print multiple p-type thermoelectric legs (pins) consecutively with this simple technique, and the printed TEGs have excellent thermal potential (288 μV K–1 at room temperature) and excellent temperature response properties, which exhibited an output voltage of 127.94 mV at a temperature difference (ΔT) of 40 K. The 3D-printed thermoelectric generator enables the collection of thermal energy. In addition, the device has excellent temperature sensing characteristics, and this temperature signal to electrical signal conversion is very rapid, which enables temperature sensing alarms in a wide temperature domain. Combining these features, an energy harvesting and electrical alarm concept for home-scale applications is proposed, which is expected to provide a diverse research idea for the application of next-generation thermoelectric devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c07013</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (27), p.35353-35360</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6285-738X ; 0000-0003-3070-9021 ; 0009-0002-5129-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c07013$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c07013$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Cui, Gong-Peng</creatorcontrib><creatorcontrib>Feng, Chang-Ping</creatorcontrib><creatorcontrib>Xu, Shao-Cun</creatorcontrib><creatorcontrib>Sun, Kai-Yin</creatorcontrib><creatorcontrib>Ji, Jin-Chao</creatorcontrib><creatorcontrib>Hou, Lei</creatorcontrib><creatorcontrib>Lan, Hong-Bo</creatorcontrib><creatorcontrib>Shang, Hong-Jing</creatorcontrib><creatorcontrib>Ding, Fa-Zhu</creatorcontrib><title>3D-printed Bi2Te3‑based Thermoelectric Generators for Energy Harvesting and Temperature Response</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Thermoelectric generators (TEGs) are environmentally friendly energy harvesting technologies that hold great promise in the field of self-powered electronics and sensing. However, the current development of thermoelectric (TE) devices has largely lagged behind the development of thermoelectric materials, especially in the preparation of thermoelectric components with customizable shapes and excellent properties, which largely limits their practical applications. These issues can be effectively addressed by using 3D printing technology. Here, we print multiple p-type thermoelectric legs (pins) consecutively with this simple technique, and the printed TEGs have excellent thermal potential (288 μV K–1 at room temperature) and excellent temperature response properties, which exhibited an output voltage of 127.94 mV at a temperature difference (ΔT) of 40 K. The 3D-printed thermoelectric generator enables the collection of thermal energy. In addition, the device has excellent temperature sensing characteristics, and this temperature signal to electrical signal conversion is very rapid, which enables temperature sensing alarms in a wide temperature domain. Combining these features, an energy harvesting and electrical alarm concept for home-scale applications is proposed, which is expected to provide a diverse research idea for the application of next-generation thermoelectric devices.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQxhdRsFavnvcoQur-yyY5aq2tUBCknpfNZlJTkt24mwjefAVf0SdxS4unmY_5Zvjmh9A1JTNKGL3TJuiumQlDMkL5CZrQQogkZyk7_e-FOEcXIewIkZyRdIJK_pj0vrEDVPihYRvgv98_pQ5Rbt7Bdw5aMINvDF6CBa8H5wOunceLqLZfeKX9J4ShsVusbdyBrt-7Rg_4FULvbIBLdFbrNsDVsU7R29NiM18l65fl8_x-nWia8iEpS6MNqw0VmnGSSVPrIicVEVUlsiqOoBKpoERLVhQF5SaTeXxDipJJlpqCT9HN4W7v3ccYQ6muCQbaVltwY1DxKGdc5JJG6-3BGpmpnRu9jcEUJWoPUh1AqiNI_gfrTmiV</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Cui, Gong-Peng</creator><creator>Feng, Chang-Ping</creator><creator>Xu, Shao-Cun</creator><creator>Sun, Kai-Yin</creator><creator>Ji, Jin-Chao</creator><creator>Hou, Lei</creator><creator>Lan, Hong-Bo</creator><creator>Shang, Hong-Jing</creator><creator>Ding, Fa-Zhu</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6285-738X</orcidid><orcidid>https://orcid.org/0000-0003-3070-9021</orcidid><orcidid>https://orcid.org/0009-0002-5129-5286</orcidid></search><sort><creationdate>20240710</creationdate><title>3D-printed Bi2Te3‑based Thermoelectric Generators for Energy Harvesting and Temperature Response</title><author>Cui, Gong-Peng ; Feng, Chang-Ping ; Xu, Shao-Cun ; Sun, Kai-Yin ; Ji, Jin-Chao ; Hou, Lei ; Lan, Hong-Bo ; Shang, Hong-Jing ; Ding, Fa-Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-bbcac2fc14a23076cfa980d04dd47dac2ed45410a6299913c76800664b2625c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Gong-Peng</creatorcontrib><creatorcontrib>Feng, Chang-Ping</creatorcontrib><creatorcontrib>Xu, Shao-Cun</creatorcontrib><creatorcontrib>Sun, Kai-Yin</creatorcontrib><creatorcontrib>Ji, Jin-Chao</creatorcontrib><creatorcontrib>Hou, Lei</creatorcontrib><creatorcontrib>Lan, Hong-Bo</creatorcontrib><creatorcontrib>Shang, Hong-Jing</creatorcontrib><creatorcontrib>Ding, Fa-Zhu</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Gong-Peng</au><au>Feng, Chang-Ping</au><au>Xu, Shao-Cun</au><au>Sun, Kai-Yin</au><au>Ji, Jin-Chao</au><au>Hou, Lei</au><au>Lan, Hong-Bo</au><au>Shang, Hong-Jing</au><au>Ding, Fa-Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed Bi2Te3‑based Thermoelectric Generators for Energy Harvesting and Temperature Response</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>16</volume><issue>27</issue><spage>35353</spage><epage>35360</epage><pages>35353-35360</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Thermoelectric generators (TEGs) are environmentally friendly energy harvesting technologies that hold great promise in the field of self-powered electronics and sensing. However, the current development of thermoelectric (TE) devices has largely lagged behind the development of thermoelectric materials, especially in the preparation of thermoelectric components with customizable shapes and excellent properties, which largely limits their practical applications. These issues can be effectively addressed by using 3D printing technology. Here, we print multiple p-type thermoelectric legs (pins) consecutively with this simple technique, and the printed TEGs have excellent thermal potential (288 μV K–1 at room temperature) and excellent temperature response properties, which exhibited an output voltage of 127.94 mV at a temperature difference (ΔT) of 40 K. The 3D-printed thermoelectric generator enables the collection of thermal energy. In addition, the device has excellent temperature sensing characteristics, and this temperature signal to electrical signal conversion is very rapid, which enables temperature sensing alarms in a wide temperature domain. Combining these features, an energy harvesting and electrical alarm concept for home-scale applications is proposed, which is expected to provide a diverse research idea for the application of next-generation thermoelectric devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c07013</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6285-738X</orcidid><orcidid>https://orcid.org/0000-0003-3070-9021</orcidid><orcidid>https://orcid.org/0009-0002-5129-5286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (27), p.35353-35360
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3073234861
source American Chemical Society Journals
subjects Functional Inorganic Materials and Devices
title 3D-printed Bi2Te3‑based Thermoelectric Generators for Energy Harvesting and Temperature Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20Bi2Te3%E2%80%91based%20Thermoelectric%20Generators%20for%20Energy%20Harvesting%20and%20Temperature%20Response&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cui,%20Gong-Peng&rft.date=2024-07-10&rft.volume=16&rft.issue=27&rft.spage=35353&rft.epage=35360&rft.pages=35353-35360&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c07013&rft_dat=%3Cproquest_acs_j%3E3073234861%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073234861&rft_id=info:pmid/&rfr_iscdi=true