Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators

The optimization of nanoscale optical devices and structures will enable the exquisite control of planar optical fields. Polariton manipulation is the primary strategy in play. In two-dimensional heterostructures, the ability to excite mixed optical modes offers an additional control in device desig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-07, Vol.18 (27), p.17492-17499
Hauptverfasser: Luo, Yue, Park, Ji-Hoon, Zhu, Jiadi, Tamagnone, Michele, Capasso, Federico, Palacios, Tomás, Kong, Jing, Wilson, William L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17499
container_issue 27
container_start_page 17492
container_title ACS nano
container_volume 18
creator Luo, Yue
Park, Ji-Hoon
Zhu, Jiadi
Tamagnone, Michele
Capasso, Federico
Palacios, Tomás
Kong, Jing
Wilson, William L.
description The optimization of nanoscale optical devices and structures will enable the exquisite control of planar optical fields. Polariton manipulation is the primary strategy in play. In two-dimensional heterostructures, the ability to excite mixed optical modes offers an additional control in device design. Phonon polaritons in hexagonal boron nitride have been a common system explored for the control of near-infrared radiation. Their hybridization with graphene plasmons makes these mixed phonon polariton modes in hexagonal boron nitride more appealing in terms of enabling active control of electrodynamic properties with a reduction of propagation losses. Optical resonators can be added to confine these hybridized plasmon–phonon polaritons deeply into the subwavelength regime, with these structures featuring high quality factors. Here, we show a scalable approach for the design and fabrication of heterostructure nanodisc resonators patterned in chemical vapor deposition-grown monolayer graphene and h-BN sheets. Real-space mid-infrared nanoimaging reveals the nature of hybridized polaritons in the heterostructures. We simulate and experimentally demonstrate localized hybridized polariton modes in heterostructure nanodisc resonators and demonstrate that those nanodiscs can collectively couple to the waveguide. High quality factors for the nanodiscs are measured with nanoscale Fourier transform infrared spectroscopy. Our results offer practical strategies to realize scalable nanophotonic devices utilizing low-loss hybridized polaritons for applications such as on-chip optical components.
doi_str_mv 10.1021/acsnano.3c13047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073234720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073234720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-136577b3846c5fba4299b603524f8510c62a3edb255e60e06d34e5989bd5e5ee3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRbK2evckeBUm7H9lNcpSiRigofqB4WTbJi6aku3U3Eepf70pjb57eHH4zzBuETimZUsLoTJfeaGOnvKScxMkeGtOMy4ik8nV_pwUdoSPvl4SIJE3kIRrxNIsJk9kYveXN-0e7wXNr6sZAhfNN4Zqq-Q7y3rbaNZ01HjcGP5a61UUL-EsbXIHDL1q3HufQgbO-c33Z9Q7wA3hrdGedP0YHdSDgZLgT9Hx99TTPo8Xdze38chFpliZdRLkUSVLwNJalqAsdsywrJOGCxXWoTkrJNIeqYEKAJEBkxWMQWZoVlQABwCfofJu7dvazB9-pVeNLaFttwPZecZJwxuOEkYDOtmgZKnsHtVq7ZqXdRlGifgdVw6BqGDQ4zobwvlhBteP_FgzAxRYITrW0vTPh13_jfgBrFYG7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073234720</pqid></control><display><type>article</type><title>Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators</title><source>ACS Publications</source><creator>Luo, Yue ; Park, Ji-Hoon ; Zhu, Jiadi ; Tamagnone, Michele ; Capasso, Federico ; Palacios, Tomás ; Kong, Jing ; Wilson, William L.</creator><creatorcontrib>Luo, Yue ; Park, Ji-Hoon ; Zhu, Jiadi ; Tamagnone, Michele ; Capasso, Federico ; Palacios, Tomás ; Kong, Jing ; Wilson, William L.</creatorcontrib><description>The optimization of nanoscale optical devices and structures will enable the exquisite control of planar optical fields. Polariton manipulation is the primary strategy in play. In two-dimensional heterostructures, the ability to excite mixed optical modes offers an additional control in device design. Phonon polaritons in hexagonal boron nitride have been a common system explored for the control of near-infrared radiation. Their hybridization with graphene plasmons makes these mixed phonon polariton modes in hexagonal boron nitride more appealing in terms of enabling active control of electrodynamic properties with a reduction of propagation losses. Optical resonators can be added to confine these hybridized plasmon–phonon polaritons deeply into the subwavelength regime, with these structures featuring high quality factors. Here, we show a scalable approach for the design and fabrication of heterostructure nanodisc resonators patterned in chemical vapor deposition-grown monolayer graphene and h-BN sheets. Real-space mid-infrared nanoimaging reveals the nature of hybridized polaritons in the heterostructures. We simulate and experimentally demonstrate localized hybridized polariton modes in heterostructure nanodisc resonators and demonstrate that those nanodiscs can collectively couple to the waveguide. High quality factors for the nanodiscs are measured with nanoscale Fourier transform infrared spectroscopy. Our results offer practical strategies to realize scalable nanophotonic devices utilizing low-loss hybridized polaritons for applications such as on-chip optical components.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c13047</identifier><identifier>PMID: 38940269</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-07, Vol.18 (27), p.17492-17499</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a287t-136577b3846c5fba4299b603524f8510c62a3edb255e60e06d34e5989bd5e5ee3</cites><orcidid>0000-0003-0551-1208 ; 0000-0002-2757-5395 ; 0000-0003-2755-7610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c13047$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c13047$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38940269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Yue</creatorcontrib><creatorcontrib>Park, Ji-Hoon</creatorcontrib><creatorcontrib>Zhu, Jiadi</creatorcontrib><creatorcontrib>Tamagnone, Michele</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><creatorcontrib>Palacios, Tomás</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Wilson, William L.</creatorcontrib><title>Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The optimization of nanoscale optical devices and structures will enable the exquisite control of planar optical fields. Polariton manipulation is the primary strategy in play. In two-dimensional heterostructures, the ability to excite mixed optical modes offers an additional control in device design. Phonon polaritons in hexagonal boron nitride have been a common system explored for the control of near-infrared radiation. Their hybridization with graphene plasmons makes these mixed phonon polariton modes in hexagonal boron nitride more appealing in terms of enabling active control of electrodynamic properties with a reduction of propagation losses. Optical resonators can be added to confine these hybridized plasmon–phonon polaritons deeply into the subwavelength regime, with these structures featuring high quality factors. Here, we show a scalable approach for the design and fabrication of heterostructure nanodisc resonators patterned in chemical vapor deposition-grown monolayer graphene and h-BN sheets. Real-space mid-infrared nanoimaging reveals the nature of hybridized polaritons in the heterostructures. We simulate and experimentally demonstrate localized hybridized polariton modes in heterostructure nanodisc resonators and demonstrate that those nanodiscs can collectively couple to the waveguide. High quality factors for the nanodiscs are measured with nanoscale Fourier transform infrared spectroscopy. Our results offer practical strategies to realize scalable nanophotonic devices utilizing low-loss hybridized polaritons for applications such as on-chip optical components.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRbK2evckeBUm7H9lNcpSiRigofqB4WTbJi6aku3U3Eepf70pjb57eHH4zzBuETimZUsLoTJfeaGOnvKScxMkeGtOMy4ik8nV_pwUdoSPvl4SIJE3kIRrxNIsJk9kYveXN-0e7wXNr6sZAhfNN4Zqq-Q7y3rbaNZ01HjcGP5a61UUL-EsbXIHDL1q3HufQgbO-c33Z9Q7wA3hrdGedP0YHdSDgZLgT9Hx99TTPo8Xdze38chFpliZdRLkUSVLwNJalqAsdsywrJOGCxXWoTkrJNIeqYEKAJEBkxWMQWZoVlQABwCfofJu7dvazB9-pVeNLaFttwPZecZJwxuOEkYDOtmgZKnsHtVq7ZqXdRlGifgdVw6BqGDQ4zobwvlhBteP_FgzAxRYITrW0vTPh13_jfgBrFYG7</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Luo, Yue</creator><creator>Park, Ji-Hoon</creator><creator>Zhu, Jiadi</creator><creator>Tamagnone, Michele</creator><creator>Capasso, Federico</creator><creator>Palacios, Tomás</creator><creator>Kong, Jing</creator><creator>Wilson, William L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0551-1208</orcidid><orcidid>https://orcid.org/0000-0002-2757-5395</orcidid><orcidid>https://orcid.org/0000-0003-2755-7610</orcidid></search><sort><creationdate>20240709</creationdate><title>Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators</title><author>Luo, Yue ; Park, Ji-Hoon ; Zhu, Jiadi ; Tamagnone, Michele ; Capasso, Federico ; Palacios, Tomás ; Kong, Jing ; Wilson, William L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-136577b3846c5fba4299b603524f8510c62a3edb255e60e06d34e5989bd5e5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yue</creatorcontrib><creatorcontrib>Park, Ji-Hoon</creatorcontrib><creatorcontrib>Zhu, Jiadi</creatorcontrib><creatorcontrib>Tamagnone, Michele</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><creatorcontrib>Palacios, Tomás</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Wilson, William L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yue</au><au>Park, Ji-Hoon</au><au>Zhu, Jiadi</au><au>Tamagnone, Michele</au><au>Capasso, Federico</au><au>Palacios, Tomás</au><au>Kong, Jing</au><au>Wilson, William L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-09</date><risdate>2024</risdate><volume>18</volume><issue>27</issue><spage>17492</spage><epage>17499</epage><pages>17492-17499</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>The optimization of nanoscale optical devices and structures will enable the exquisite control of planar optical fields. Polariton manipulation is the primary strategy in play. In two-dimensional heterostructures, the ability to excite mixed optical modes offers an additional control in device design. Phonon polaritons in hexagonal boron nitride have been a common system explored for the control of near-infrared radiation. Their hybridization with graphene plasmons makes these mixed phonon polariton modes in hexagonal boron nitride more appealing in terms of enabling active control of electrodynamic properties with a reduction of propagation losses. Optical resonators can be added to confine these hybridized plasmon–phonon polaritons deeply into the subwavelength regime, with these structures featuring high quality factors. Here, we show a scalable approach for the design and fabrication of heterostructure nanodisc resonators patterned in chemical vapor deposition-grown monolayer graphene and h-BN sheets. Real-space mid-infrared nanoimaging reveals the nature of hybridized polaritons in the heterostructures. We simulate and experimentally demonstrate localized hybridized polariton modes in heterostructure nanodisc resonators and demonstrate that those nanodiscs can collectively couple to the waveguide. High quality factors for the nanodiscs are measured with nanoscale Fourier transform infrared spectroscopy. Our results offer practical strategies to realize scalable nanophotonic devices utilizing low-loss hybridized polaritons for applications such as on-chip optical components.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38940269</pmid><doi>10.1021/acsnano.3c13047</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0551-1208</orcidid><orcidid>https://orcid.org/0000-0002-2757-5395</orcidid><orcidid>https://orcid.org/0000-0003-2755-7610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-07, Vol.18 (27), p.17492-17499
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3073234720
source ACS Publications
title Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Confined%20Hybridized%20Polaritons%20in%20Scalable%20van%20der%20Waals%20Heterostructure%20Resonators&rft.jtitle=ACS%20nano&rft.au=Luo,%20Yue&rft.date=2024-07-09&rft.volume=18&rft.issue=27&rft.spage=17492&rft.epage=17499&rft.pages=17492-17499&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c13047&rft_dat=%3Cproquest_cross%3E3073234720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073234720&rft_id=info:pmid/38940269&rfr_iscdi=true