Machine learning in soil nutrient dynamics of alpine grasslands
As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivi...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-10, Vol.946, p.174295, Article 174295 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 174295 |
container_title | The Science of the total environment |
container_volume | 946 |
creator | Jiang, Lili Wen, Guoqi Lu, Jia Yang, Hengyuan Jin, Yuexia Nie, Xiaowei Wang, Zongsong Chen, Meirong Du, Yangong Wang, Yanfen |
description | As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.
[Display omitted]
•Alpine ecosystems are critical in shaping global climate by influencing hydrological cycles and carbon sequestration.•Soil nutrient availability, equilibrium, and composition in alpine grasslands are notably affected by climate warming.•Machine learning shows promise in estimating soil nutrient temporal and spatial dynamics using diverse data sources.•The integration of machine learning in soil nutrient management can advance the sustainable development of ecosystems. |
doi_str_mv | 10.1016/j.scitotenv.2024.174295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073231765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724044437</els_id><sourcerecordid>3153675413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-53de85056415dfebfb5af7fd3e9acb071d10199e14f24039c6be1bee563a3e1c3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EoqXwCpCRJcGO4zieUIW4SUUsMFuOfVJcJU6xk0p9e1y1dO1ZzvKdy_8hdEdwRjApH1ZZ0HboB3CbLMd5kRFe5IKdoSmpuEgJzstzNMW4qFJRCj5BVyGscCxekUs0oZWgJaf5FD1-KP1jHSQtKO-sWybWJaG3beLGwVtwQ2K2TnVWh6RvEtWud_DSqxBa5Uy4RheNagPcHPoMfb88fz29pYvP1_en-SLVeYWHlFEDFcOsLAgzDdRNzVTDG0NBKF1jTkyMJQSQoskLTIUuayA1ACupokA0naH7_d61739HCIPsbNDQxiegH4OkhMVErCD0NIpjckp4ySLK96j2fQgeGrn2tlN-KwmWO9FyJY-i5U603IuOk7eHI2PdgTnO_ZuNwHwPQLSyseB3i8BpMNaDHqTp7ckjf12gk4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073231765</pqid></control><display><type>article</type><title>Machine learning in soil nutrient dynamics of alpine grasslands</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Lili ; Wen, Guoqi ; Lu, Jia ; Yang, Hengyuan ; Jin, Yuexia ; Nie, Xiaowei ; Wang, Zongsong ; Chen, Meirong ; Du, Yangong ; Wang, Yanfen</creator><creatorcontrib>Jiang, Lili ; Wen, Guoqi ; Lu, Jia ; Yang, Hengyuan ; Jin, Yuexia ; Nie, Xiaowei ; Wang, Zongsong ; Chen, Meirong ; Du, Yangong ; Wang, Yanfen</creatorcontrib><description>As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.
[Display omitted]
•Alpine ecosystems are critical in shaping global climate by influencing hydrological cycles and carbon sequestration.•Soil nutrient availability, equilibrium, and composition in alpine grasslands are notably affected by climate warming.•Machine learning shows promise in estimating soil nutrient temporal and spatial dynamics using diverse data sources.•The integration of machine learning in soil nutrient management can advance the sustainable development of ecosystems.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.174295</identifier><identifier>PMID: 38936732</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>air temperature ; Alpine grassland ; carbon sequestration ; climate ; Climate change ; environment ; grassland management ; Machine learning ; mineralization ; nitrogen ; phosphorus ; plant growth ; primary productivity ; remote sensing ; Soil nitrogen and phosphorus ; soil nutrient dynamics ; soil nutrients ; soil water ; species diversity ; spectral analysis ; terrestrial ecosystems ; vegetation</subject><ispartof>The Science of the total environment, 2024-10, Vol.946, p.174295, Article 174295</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Crown Copyright © 2024. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-53de85056415dfebfb5af7fd3e9acb071d10199e14f24039c6be1bee563a3e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969724044437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38936732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wen, Guoqi</creatorcontrib><creatorcontrib>Lu, Jia</creatorcontrib><creatorcontrib>Yang, Hengyuan</creatorcontrib><creatorcontrib>Jin, Yuexia</creatorcontrib><creatorcontrib>Nie, Xiaowei</creatorcontrib><creatorcontrib>Wang, Zongsong</creatorcontrib><creatorcontrib>Chen, Meirong</creatorcontrib><creatorcontrib>Du, Yangong</creatorcontrib><creatorcontrib>Wang, Yanfen</creatorcontrib><title>Machine learning in soil nutrient dynamics of alpine grasslands</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.
[Display omitted]
•Alpine ecosystems are critical in shaping global climate by influencing hydrological cycles and carbon sequestration.•Soil nutrient availability, equilibrium, and composition in alpine grasslands are notably affected by climate warming.•Machine learning shows promise in estimating soil nutrient temporal and spatial dynamics using diverse data sources.•The integration of machine learning in soil nutrient management can advance the sustainable development of ecosystems.</description><subject>air temperature</subject><subject>Alpine grassland</subject><subject>carbon sequestration</subject><subject>climate</subject><subject>Climate change</subject><subject>environment</subject><subject>grassland management</subject><subject>Machine learning</subject><subject>mineralization</subject><subject>nitrogen</subject><subject>phosphorus</subject><subject>plant growth</subject><subject>primary productivity</subject><subject>remote sensing</subject><subject>Soil nitrogen and phosphorus</subject><subject>soil nutrient dynamics</subject><subject>soil nutrients</subject><subject>soil water</subject><subject>species diversity</subject><subject>spectral analysis</subject><subject>terrestrial ecosystems</subject><subject>vegetation</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EoqXwCpCRJcGO4zieUIW4SUUsMFuOfVJcJU6xk0p9e1y1dO1ZzvKdy_8hdEdwRjApH1ZZ0HboB3CbLMd5kRFe5IKdoSmpuEgJzstzNMW4qFJRCj5BVyGscCxekUs0oZWgJaf5FD1-KP1jHSQtKO-sWybWJaG3beLGwVtwQ2K2TnVWh6RvEtWud_DSqxBa5Uy4RheNagPcHPoMfb88fz29pYvP1_en-SLVeYWHlFEDFcOsLAgzDdRNzVTDG0NBKF1jTkyMJQSQoskLTIUuayA1ACupokA0naH7_d61739HCIPsbNDQxiegH4OkhMVErCD0NIpjckp4ySLK96j2fQgeGrn2tlN-KwmWO9FyJY-i5U603IuOk7eHI2PdgTnO_ZuNwHwPQLSyseB3i8BpMNaDHqTp7ckjf12gk4k</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Jiang, Lili</creator><creator>Wen, Guoqi</creator><creator>Lu, Jia</creator><creator>Yang, Hengyuan</creator><creator>Jin, Yuexia</creator><creator>Nie, Xiaowei</creator><creator>Wang, Zongsong</creator><creator>Chen, Meirong</creator><creator>Du, Yangong</creator><creator>Wang, Yanfen</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241010</creationdate><title>Machine learning in soil nutrient dynamics of alpine grasslands</title><author>Jiang, Lili ; Wen, Guoqi ; Lu, Jia ; Yang, Hengyuan ; Jin, Yuexia ; Nie, Xiaowei ; Wang, Zongsong ; Chen, Meirong ; Du, Yangong ; Wang, Yanfen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-53de85056415dfebfb5af7fd3e9acb071d10199e14f24039c6be1bee563a3e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air temperature</topic><topic>Alpine grassland</topic><topic>carbon sequestration</topic><topic>climate</topic><topic>Climate change</topic><topic>environment</topic><topic>grassland management</topic><topic>Machine learning</topic><topic>mineralization</topic><topic>nitrogen</topic><topic>phosphorus</topic><topic>plant growth</topic><topic>primary productivity</topic><topic>remote sensing</topic><topic>Soil nitrogen and phosphorus</topic><topic>soil nutrient dynamics</topic><topic>soil nutrients</topic><topic>soil water</topic><topic>species diversity</topic><topic>spectral analysis</topic><topic>terrestrial ecosystems</topic><topic>vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wen, Guoqi</creatorcontrib><creatorcontrib>Lu, Jia</creatorcontrib><creatorcontrib>Yang, Hengyuan</creatorcontrib><creatorcontrib>Jin, Yuexia</creatorcontrib><creatorcontrib>Nie, Xiaowei</creatorcontrib><creatorcontrib>Wang, Zongsong</creatorcontrib><creatorcontrib>Chen, Meirong</creatorcontrib><creatorcontrib>Du, Yangong</creatorcontrib><creatorcontrib>Wang, Yanfen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Lili</au><au>Wen, Guoqi</au><au>Lu, Jia</au><au>Yang, Hengyuan</au><au>Jin, Yuexia</au><au>Nie, Xiaowei</au><au>Wang, Zongsong</au><au>Chen, Meirong</au><au>Du, Yangong</au><au>Wang, Yanfen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in soil nutrient dynamics of alpine grasslands</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-10-10</date><risdate>2024</risdate><volume>946</volume><spage>174295</spage><pages>174295-</pages><artnum>174295</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.
[Display omitted]
•Alpine ecosystems are critical in shaping global climate by influencing hydrological cycles and carbon sequestration.•Soil nutrient availability, equilibrium, and composition in alpine grasslands are notably affected by climate warming.•Machine learning shows promise in estimating soil nutrient temporal and spatial dynamics using diverse data sources.•The integration of machine learning in soil nutrient management can advance the sustainable development of ecosystems.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38936732</pmid><doi>10.1016/j.scitotenv.2024.174295</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2024-10, Vol.946, p.174295, Article 174295 |
issn | 0048-9697 1879-1026 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_3073231765 |
source | Elsevier ScienceDirect Journals |
subjects | air temperature Alpine grassland carbon sequestration climate Climate change environment grassland management Machine learning mineralization nitrogen phosphorus plant growth primary productivity remote sensing Soil nitrogen and phosphorus soil nutrient dynamics soil nutrients soil water species diversity spectral analysis terrestrial ecosystems vegetation |
title | Machine learning in soil nutrient dynamics of alpine grasslands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20soil%20nutrient%20dynamics%20of%20alpine%20grasslands&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Jiang,%20Lili&rft.date=2024-10-10&rft.volume=946&rft.spage=174295&rft.pages=174295-&rft.artnum=174295&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.174295&rft_dat=%3Cproquest_cross%3E3153675413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073231765&rft_id=info:pmid/38936732&rft_els_id=S0048969724044437&rfr_iscdi=true |