Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling

Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (27), p.34467-34479
Hauptverfasser: Luque, Gisela C., Picchio, Matías L., Daou, Bahaa, Lasa-Fernandez, Haizpea, Criado-Gonzalez, Miryam, Querejeta, Ramon, Filgueiras-Ramas, David, Prato, Maurizio, Mecerreyes, David, Ruiz-Cabello, Jesús, Alegret, Nuria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34479
container_issue 27
container_start_page 34467
container_title ACS applied materials & interfaces
container_volume 16
creator Luque, Gisela C.
Picchio, Matías L.
Daou, Bahaa
Lasa-Fernandez, Haizpea
Criado-Gonzalez, Miryam
Querejeta, Ramon
Filgueiras-Ramas, David
Prato, Maurizio
Mecerreyes, David
Ruiz-Cabello, Jesús
Alegret, Nuria
description Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly­(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly­(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.
doi_str_mv 10.1021/acsami.4c03784
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073231154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073231154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-5669e0225efdfa4db34947dac9056d53b3f4cd6782acafcca2c8e19aa2daa0103</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRrFavHiXHKqbuV9LkqMEvKFiknsNkd2K2JNm6m4j990Zae_M0M_C8L8xDyAWjU0Y5uwXloTFTqaiYJfKAnLBUyjDhET_c71KOyKn3K0pjwWl0TEYiSUWcsOSEwMKZtoOixmBh681E3MgQu2pTY4va2O9NVxm7robrKrwHjzrIbKt71ZmvIQGdqtAHpXVBBk4bUMHSeN9j8IaN1Vib9uOMHJVQezzfzTF5f3xYZs_h_PXpJbubh8BZ1IVRHKdIOY-w1CVIXQiZypkGldIo1pEoRCmVjmcJBwWlUsBVgiwF4BqAMirGZLLtXTv72aPv8sZ4hXUNLdre54LOBBeMRXJAp1tUOeu9wzJfO9OA2-SM5r9a863WfKd1CFzuuvuiQb3H_zwOwPUWGIL5yvauHV79r-0H-WWDvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073231154</pqid></control><display><type>article</type><title>Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Luque, Gisela C. ; Picchio, Matías L. ; Daou, Bahaa ; Lasa-Fernandez, Haizpea ; Criado-Gonzalez, Miryam ; Querejeta, Ramon ; Filgueiras-Ramas, David ; Prato, Maurizio ; Mecerreyes, David ; Ruiz-Cabello, Jesús ; Alegret, Nuria</creator><creatorcontrib>Luque, Gisela C. ; Picchio, Matías L. ; Daou, Bahaa ; Lasa-Fernandez, Haizpea ; Criado-Gonzalez, Miryam ; Querejeta, Ramon ; Filgueiras-Ramas, David ; Prato, Maurizio ; Mecerreyes, David ; Ruiz-Cabello, Jesús ; Alegret, Nuria</creatorcontrib><description>Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly­(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly­(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c03784</identifier><identifier>PMID: 38936818</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biological and Medical Applications of Materials and Interfaces ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Bridged Bicyclo Compounds, Heterocyclic - pharmacology ; Electric Conductivity ; Gallic Acid - chemistry ; Gallic Acid - pharmacology ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mice ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Polymers - chemistry ; Polymers - pharmacology ; Polyvinyl Alcohol - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (27), p.34467-34479</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-5669e0225efdfa4db34947dac9056d53b3f4cd6782acafcca2c8e19aa2daa0103</cites><orcidid>0000-0002-0788-7156 ; 0000-0002-2903-5835 ; 0000-0001-8681-5056 ; 0000-0002-8329-4459 ; 0000-0002-5502-892X ; 0000-0002-8869-8612 ; 0000-0003-3454-5992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c03784$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c03784$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38936818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luque, Gisela C.</creatorcontrib><creatorcontrib>Picchio, Matías L.</creatorcontrib><creatorcontrib>Daou, Bahaa</creatorcontrib><creatorcontrib>Lasa-Fernandez, Haizpea</creatorcontrib><creatorcontrib>Criado-Gonzalez, Miryam</creatorcontrib><creatorcontrib>Querejeta, Ramon</creatorcontrib><creatorcontrib>Filgueiras-Ramas, David</creatorcontrib><creatorcontrib>Prato, Maurizio</creatorcontrib><creatorcontrib>Mecerreyes, David</creatorcontrib><creatorcontrib>Ruiz-Cabello, Jesús</creatorcontrib><creatorcontrib>Alegret, Nuria</creatorcontrib><title>Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly­(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly­(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</subject><subject>Electric Conductivity</subject><subject>Gallic Acid - chemistry</subject><subject>Gallic Acid - pharmacology</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mice</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><subject>Polyvinyl Alcohol - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRrFavHiXHKqbuV9LkqMEvKFiknsNkd2K2JNm6m4j990Zae_M0M_C8L8xDyAWjU0Y5uwXloTFTqaiYJfKAnLBUyjDhET_c71KOyKn3K0pjwWl0TEYiSUWcsOSEwMKZtoOixmBh681E3MgQu2pTY4va2O9NVxm7robrKrwHjzrIbKt71ZmvIQGdqtAHpXVBBk4bUMHSeN9j8IaN1Vib9uOMHJVQezzfzTF5f3xYZs_h_PXpJbubh8BZ1IVRHKdIOY-w1CVIXQiZypkGldIo1pEoRCmVjmcJBwWlUsBVgiwF4BqAMirGZLLtXTv72aPv8sZ4hXUNLdre54LOBBeMRXJAp1tUOeu9wzJfO9OA2-SM5r9a863WfKd1CFzuuvuiQb3H_zwOwPUWGIL5yvauHV79r-0H-WWDvw</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Luque, Gisela C.</creator><creator>Picchio, Matías L.</creator><creator>Daou, Bahaa</creator><creator>Lasa-Fernandez, Haizpea</creator><creator>Criado-Gonzalez, Miryam</creator><creator>Querejeta, Ramon</creator><creator>Filgueiras-Ramas, David</creator><creator>Prato, Maurizio</creator><creator>Mecerreyes, David</creator><creator>Ruiz-Cabello, Jesús</creator><creator>Alegret, Nuria</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0788-7156</orcidid><orcidid>https://orcid.org/0000-0002-2903-5835</orcidid><orcidid>https://orcid.org/0000-0001-8681-5056</orcidid><orcidid>https://orcid.org/0000-0002-8329-4459</orcidid><orcidid>https://orcid.org/0000-0002-5502-892X</orcidid><orcidid>https://orcid.org/0000-0002-8869-8612</orcidid><orcidid>https://orcid.org/0000-0003-3454-5992</orcidid></search><sort><creationdate>20240710</creationdate><title>Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling</title><author>Luque, Gisela C. ; Picchio, Matías L. ; Daou, Bahaa ; Lasa-Fernandez, Haizpea ; Criado-Gonzalez, Miryam ; Querejeta, Ramon ; Filgueiras-Ramas, David ; Prato, Maurizio ; Mecerreyes, David ; Ruiz-Cabello, Jesús ; Alegret, Nuria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-5669e0225efdfa4db34947dac9056d53b3f4cd6782acafcca2c8e19aa2daa0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</topic><topic>Electric Conductivity</topic><topic>Gallic Acid - chemistry</topic><topic>Gallic Acid - pharmacology</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mice</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><topic>Polyvinyl Alcohol - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luque, Gisela C.</creatorcontrib><creatorcontrib>Picchio, Matías L.</creatorcontrib><creatorcontrib>Daou, Bahaa</creatorcontrib><creatorcontrib>Lasa-Fernandez, Haizpea</creatorcontrib><creatorcontrib>Criado-Gonzalez, Miryam</creatorcontrib><creatorcontrib>Querejeta, Ramon</creatorcontrib><creatorcontrib>Filgueiras-Ramas, David</creatorcontrib><creatorcontrib>Prato, Maurizio</creatorcontrib><creatorcontrib>Mecerreyes, David</creatorcontrib><creatorcontrib>Ruiz-Cabello, Jesús</creatorcontrib><creatorcontrib>Alegret, Nuria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luque, Gisela C.</au><au>Picchio, Matías L.</au><au>Daou, Bahaa</au><au>Lasa-Fernandez, Haizpea</au><au>Criado-Gonzalez, Miryam</au><au>Querejeta, Ramon</au><au>Filgueiras-Ramas, David</au><au>Prato, Maurizio</au><au>Mecerreyes, David</au><au>Ruiz-Cabello, Jesús</au><au>Alegret, Nuria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>16</volume><issue>27</issue><spage>34467</spage><epage>34479</epage><pages>34467-34479</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly­(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly­(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38936818</pmid><doi>10.1021/acsami.4c03784</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0788-7156</orcidid><orcidid>https://orcid.org/0000-0002-2903-5835</orcidid><orcidid>https://orcid.org/0000-0001-8681-5056</orcidid><orcidid>https://orcid.org/0000-0002-8329-4459</orcidid><orcidid>https://orcid.org/0000-0002-5502-892X</orcidid><orcidid>https://orcid.org/0000-0002-8869-8612</orcidid><orcidid>https://orcid.org/0000-0003-3454-5992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (27), p.34467-34479
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3073231154
source MEDLINE; American Chemical Society Journals
subjects Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Biological and Medical Applications of Materials and Interfaces
Bridged Bicyclo Compounds, Heterocyclic - chemistry
Bridged Bicyclo Compounds, Heterocyclic - pharmacology
Electric Conductivity
Gallic Acid - chemistry
Gallic Acid - pharmacology
Hydrogels - chemistry
Hydrogels - pharmacology
Mice
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Polymers - chemistry
Polymers - pharmacology
Polyvinyl Alcohol - chemistry
title Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Printable%20Poly(3,4-ethylenedioxythiophene)-Based%20Conductive%20Patches%20for%20Cardiac%20Tissue%20Remodeling&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Luque,%20Gisela%20C.&rft.date=2024-07-10&rft.volume=16&rft.issue=27&rft.spage=34467&rft.epage=34479&rft.pages=34467-34479&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c03784&rft_dat=%3Cproquest_cross%3E3073231154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073231154&rft_id=info:pmid/38936818&rfr_iscdi=true