Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries

[Display omitted] Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-11, Vol.674, p.297-305
Hauptverfasser: Hu, Xi, Liao, Yanxin, Wu, Mengcheng, Zheng, Wanying, Long, Mujun, Chen, Lingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue
container_start_page 297
container_title Journal of colloid and interface science
container_volume 674
creator Hu, Xi
Liao, Yanxin
Wu, Mengcheng
Zheng, Wanying
Long, Mujun
Chen, Lingyun
description [Display omitted] Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g−1 at 0.1 A g−1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.
doi_str_mv 10.1016/j.jcis.2024.06.152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073229947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724013997</els_id><sourcerecordid>3073229947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-552a57d619bbb5ae6b6cf77beee27518cf6642f8d3f45f23bdd5873f63d0c64d3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKsu3aQmaZNMwY0M_oHDbHQd0uTGSek0NWkFfS6fw2eyZVy7unDvOYd7PoQuKckpoeK6yRvjU84IK3MicsrZEVpQUnEsKSmO0YIQRnElK3mKzlJqCKGU82qBYAMp9CGGMWUm9D1EbEMPNvv5xptuy7I0Trs0xNEMY4SUDSGDTtctZDv_tsPT0YW4152BTL-PMOd8-c5gH7qs1sMA0UM6RydOtwku_uYSvd7fvawf8fP24Wl9-4wNW5UD5pxpLq2gVV3XXIOohXFS1gDAJKcr44QomVvZwpXcsaK2lq9k4URhiRGlLZbo6pDbxzA9kwa198lA2-pu_kwVRBaMVVUpJyk7SE0MKUVwqo9-r-OnokTNTFWjZqZqZqqIUBPTyXRzMMFU4sNDVMl4mLpbH8EMygb_n_0XreWDJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073229947</pqid></control><display><type>article</type><title>Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Xi ; Liao, Yanxin ; Wu, Mengcheng ; Zheng, Wanying ; Long, Mujun ; Chen, Lingyun</creator><creatorcontrib>Hu, Xi ; Liao, Yanxin ; Wu, Mengcheng ; Zheng, Wanying ; Long, Mujun ; Chen, Lingyun</creatorcontrib><description>[Display omitted] Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g−1 at 0.1 A g−1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.06.152</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Aqueous zinc–ion batteries ; Cu doping ; Dissolution–deposition mechanism ; MnO2 ; Oxygen defect</subject><ispartof>Journal of colloid and interface science, 2024-11, Vol.674, p.297-305</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-552a57d619bbb5ae6b6cf77beee27518cf6642f8d3f45f23bdd5873f63d0c64d3</cites><orcidid>0000-0003-2277-7470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979724013997$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hu, Xi</creatorcontrib><creatorcontrib>Liao, Yanxin</creatorcontrib><creatorcontrib>Wu, Mengcheng</creatorcontrib><creatorcontrib>Zheng, Wanying</creatorcontrib><creatorcontrib>Long, Mujun</creatorcontrib><creatorcontrib>Chen, Lingyun</creatorcontrib><title>Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries</title><title>Journal of colloid and interface science</title><description>[Display omitted] Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g−1 at 0.1 A g−1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.</description><subject>Aqueous zinc–ion batteries</subject><subject>Cu doping</subject><subject>Dissolution–deposition mechanism</subject><subject>MnO2</subject><subject>Oxygen defect</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKsu3aQmaZNMwY0M_oHDbHQd0uTGSek0NWkFfS6fw2eyZVy7unDvOYd7PoQuKckpoeK6yRvjU84IK3MicsrZEVpQUnEsKSmO0YIQRnElK3mKzlJqCKGU82qBYAMp9CGGMWUm9D1EbEMPNvv5xptuy7I0Trs0xNEMY4SUDSGDTtctZDv_tsPT0YW4152BTL-PMOd8-c5gH7qs1sMA0UM6RydOtwku_uYSvd7fvawf8fP24Wl9-4wNW5UD5pxpLq2gVV3XXIOohXFS1gDAJKcr44QomVvZwpXcsaK2lq9k4URhiRGlLZbo6pDbxzA9kwa198lA2-pu_kwVRBaMVVUpJyk7SE0MKUVwqo9-r-OnokTNTFWjZqZqZqqIUBPTyXRzMMFU4sNDVMl4mLpbH8EMygb_n_0XreWDJQ</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Hu, Xi</creator><creator>Liao, Yanxin</creator><creator>Wu, Mengcheng</creator><creator>Zheng, Wanying</creator><creator>Long, Mujun</creator><creator>Chen, Lingyun</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2277-7470</orcidid></search><sort><creationdate>20241115</creationdate><title>Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries</title><author>Hu, Xi ; Liao, Yanxin ; Wu, Mengcheng ; Zheng, Wanying ; Long, Mujun ; Chen, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-552a57d619bbb5ae6b6cf77beee27518cf6642f8d3f45f23bdd5873f63d0c64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous zinc–ion batteries</topic><topic>Cu doping</topic><topic>Dissolution–deposition mechanism</topic><topic>MnO2</topic><topic>Oxygen defect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xi</creatorcontrib><creatorcontrib>Liao, Yanxin</creatorcontrib><creatorcontrib>Wu, Mengcheng</creatorcontrib><creatorcontrib>Zheng, Wanying</creatorcontrib><creatorcontrib>Long, Mujun</creatorcontrib><creatorcontrib>Chen, Lingyun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xi</au><au>Liao, Yanxin</au><au>Wu, Mengcheng</au><au>Zheng, Wanying</au><au>Long, Mujun</au><au>Chen, Lingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>674</volume><spage>297</spage><epage>305</epage><pages>297-305</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g−1 at 0.1 A g−1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.06.152</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2277-7470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-11, Vol.674, p.297-305
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3073229947
source Elsevier ScienceDirect Journals
subjects Aqueous zinc–ion batteries
Cu doping
Dissolution–deposition mechanism
MnO2
Oxygen defect
title Mesoporous copper-doped δ-MnO2 superstructures to enable high-performance aqueous zinc-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20copper-doped%20%CE%B4-MnO2%20superstructures%20to%20enable%20high-performance%20aqueous%20zinc-ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Hu,%20Xi&rft.date=2024-11-15&rft.volume=674&rft.spage=297&rft.epage=305&rft.pages=297-305&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.06.152&rft_dat=%3Cproquest_cross%3E3073229947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073229947&rft_id=info:pmid/&rft_els_id=S0021979724013997&rfr_iscdi=true