Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation
The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contamina...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-07, Vol.58 (27), p.12155-12166 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12166 |
---|---|
container_issue | 27 |
container_start_page | 12155 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Liu, Jiu-Yun Duan, Pi-Jun Li, Ming-Xue Zhang, Zhi-Quan Bai, Chang-Wei Chen, Xin-Jia Kong, Yan Chen, Fei |
description | The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f– index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure–activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination. |
doi_str_mv | 10.1021/acs.est.4c05008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072816771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072816771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-55bcc1e46e651eb67dda2220e87586da778a9639a97f4556c9280953004129843</originalsourceid><addsrcrecordid>eNp1kU1rFDEch4NY7Fo9e5OAF0Fm-08ymSTHslu10BdoK3obMpmMpMwk2yQj-iH8zmbYtQfBSxLC8_zy8kPoDYE1AUpOtUlrm_K6NsAB5DO0IpxCxSUnz9EKgLBKsebbMXqZ0gMAUAbyBTpmUrFaML5Cv7cuWpPx-VjGGDy-j9qnwcZqG90P6_F18Dn8dAbfjO57mGwsy63dheSyK3gY8N08DsHryfUWn_nsOheyMwkvIt7o2BXsSudi6jHhIUR84fGdyzP-uuziWzvZ3ukl7hU6GgpkXx_mE_Tl4_n95nN1efPpYnN2WWla81xx3hlDbN3YhhPbNaLvNaUUrBRcNr0WQmrVMKWVGGrOG6OoBMUZQE2okjU7Qe_3ubsYHufyge3kkrHjqL0Nc2oZCCpJIwQp6Lt_0IcwR19uVyhJmBJ1rQp1uqdMDClFO7S76CYdf7UE2qWptjTVLvahqWK8PeTOXXn_E_-3mgJ82AOL-XTm_-L-ADzpny0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081397449</pqid></control><display><type>article</type><title>Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation</title><source>American Chemical Society Journals</source><creator>Liu, Jiu-Yun ; Duan, Pi-Jun ; Li, Ming-Xue ; Zhang, Zhi-Quan ; Bai, Chang-Wei ; Chen, Xin-Jia ; Kong, Yan ; Chen, Fei</creator><creatorcontrib>Liu, Jiu-Yun ; Duan, Pi-Jun ; Li, Ming-Xue ; Zhang, Zhi-Quan ; Bai, Chang-Wei ; Chen, Xin-Jia ; Kong, Yan ; Chen, Fei</creatorcontrib><description>The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f– index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure–activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c05008</identifier><identifier>PMID: 38934735</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adhesive bonding ; Antibiotics ; Aquatic environment ; Carbon ; Catalysts ; Chemical reactions ; Contaminants ; Decontamination ; Effectiveness ; Electron transfer ; Groundwater ; Groundwater treatment ; Hydrophobicity ; Mineralization ; Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants ; Oligomerization ; Oligomers ; Oxidation ; Polymerization ; Structure-activity relationships ; Sulfonamides ; Surface water ; Surface-groundwater relations ; Toxicity ; Van der Waals forces ; Water pollution ; Water purification</subject><ispartof>Environmental science & technology, 2024-07, Vol.58 (27), p.12155-12166</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-55bcc1e46e651eb67dda2220e87586da778a9639a97f4556c9280953004129843</cites><orcidid>0000-0002-9251-736X ; 0000-0002-8442-6134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c05008$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c05008$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38934735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiu-Yun</creatorcontrib><creatorcontrib>Duan, Pi-Jun</creatorcontrib><creatorcontrib>Li, Ming-Xue</creatorcontrib><creatorcontrib>Zhang, Zhi-Quan</creatorcontrib><creatorcontrib>Bai, Chang-Wei</creatorcontrib><creatorcontrib>Chen, Xin-Jia</creatorcontrib><creatorcontrib>Kong, Yan</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><title>Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f– index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure–activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination.</description><subject>Adhesive bonding</subject><subject>Antibiotics</subject><subject>Aquatic environment</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Contaminants</subject><subject>Decontamination</subject><subject>Effectiveness</subject><subject>Electron transfer</subject><subject>Groundwater</subject><subject>Groundwater treatment</subject><subject>Hydrophobicity</subject><subject>Mineralization</subject><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><subject>Oligomerization</subject><subject>Oligomers</subject><subject>Oxidation</subject><subject>Polymerization</subject><subject>Structure-activity relationships</subject><subject>Sulfonamides</subject><subject>Surface water</subject><subject>Surface-groundwater relations</subject><subject>Toxicity</subject><subject>Van der Waals forces</subject><subject>Water pollution</subject><subject>Water purification</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFDEch4NY7Fo9e5OAF0Fm-08ymSTHslu10BdoK3obMpmMpMwk2yQj-iH8zmbYtQfBSxLC8_zy8kPoDYE1AUpOtUlrm_K6NsAB5DO0IpxCxSUnz9EKgLBKsebbMXqZ0gMAUAbyBTpmUrFaML5Cv7cuWpPx-VjGGDy-j9qnwcZqG90P6_F18Dn8dAbfjO57mGwsy63dheSyK3gY8N08DsHryfUWn_nsOheyMwkvIt7o2BXsSudi6jHhIUR84fGdyzP-uuziWzvZ3ukl7hU6GgpkXx_mE_Tl4_n95nN1efPpYnN2WWla81xx3hlDbN3YhhPbNaLvNaUUrBRcNr0WQmrVMKWVGGrOG6OoBMUZQE2okjU7Qe_3ubsYHufyge3kkrHjqL0Nc2oZCCpJIwQp6Lt_0IcwR19uVyhJmBJ1rQp1uqdMDClFO7S76CYdf7UE2qWptjTVLvahqWK8PeTOXXn_E_-3mgJ82AOL-XTm_-L-ADzpny0</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Liu, Jiu-Yun</creator><creator>Duan, Pi-Jun</creator><creator>Li, Ming-Xue</creator><creator>Zhang, Zhi-Quan</creator><creator>Bai, Chang-Wei</creator><creator>Chen, Xin-Jia</creator><creator>Kong, Yan</creator><creator>Chen, Fei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9251-736X</orcidid><orcidid>https://orcid.org/0000-0002-8442-6134</orcidid></search><sort><creationdate>20240709</creationdate><title>Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation</title><author>Liu, Jiu-Yun ; Duan, Pi-Jun ; Li, Ming-Xue ; Zhang, Zhi-Quan ; Bai, Chang-Wei ; Chen, Xin-Jia ; Kong, Yan ; Chen, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-55bcc1e46e651eb67dda2220e87586da778a9639a97f4556c9280953004129843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive bonding</topic><topic>Antibiotics</topic><topic>Aquatic environment</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Contaminants</topic><topic>Decontamination</topic><topic>Effectiveness</topic><topic>Electron transfer</topic><topic>Groundwater</topic><topic>Groundwater treatment</topic><topic>Hydrophobicity</topic><topic>Mineralization</topic><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><topic>Oligomerization</topic><topic>Oligomers</topic><topic>Oxidation</topic><topic>Polymerization</topic><topic>Structure-activity relationships</topic><topic>Sulfonamides</topic><topic>Surface water</topic><topic>Surface-groundwater relations</topic><topic>Toxicity</topic><topic>Van der Waals forces</topic><topic>Water pollution</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiu-Yun</creatorcontrib><creatorcontrib>Duan, Pi-Jun</creatorcontrib><creatorcontrib>Li, Ming-Xue</creatorcontrib><creatorcontrib>Zhang, Zhi-Quan</creatorcontrib><creatorcontrib>Bai, Chang-Wei</creatorcontrib><creatorcontrib>Chen, Xin-Jia</creatorcontrib><creatorcontrib>Kong, Yan</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiu-Yun</au><au>Duan, Pi-Jun</au><au>Li, Ming-Xue</au><au>Zhang, Zhi-Quan</au><au>Bai, Chang-Wei</au><au>Chen, Xin-Jia</au><au>Kong, Yan</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-07-09</date><risdate>2024</risdate><volume>58</volume><issue>27</issue><spage>12155</spage><epage>12166</epage><pages>12155-12166</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f– index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure–activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38934735</pmid><doi>10.1021/acs.est.4c05008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9251-736X</orcidid><orcidid>https://orcid.org/0000-0002-8442-6134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-07, Vol.58 (27), p.12155-12166 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3072816771 |
source | American Chemical Society Journals |
subjects | Adhesive bonding Antibiotics Aquatic environment Carbon Catalysts Chemical reactions Contaminants Decontamination Effectiveness Electron transfer Groundwater Groundwater treatment Hydrophobicity Mineralization Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Oligomerization Oligomers Oxidation Polymerization Structure-activity relationships Sulfonamides Surface water Surface-groundwater relations Toxicity Van der Waals forces Water pollution Water purification |
title | Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Electron%20Transfer-Driven%20Nontoxic%20Oligomeric%20Deposition%20of%20Sulfonamide%20Antibiotics%20onto%20Carbon%20Materials%20for%20In%20Situ%20Water%20Remediation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Liu,%20Jiu-Yun&rft.date=2024-07-09&rft.volume=58&rft.issue=27&rft.spage=12155&rft.epage=12166&rft.pages=12155-12166&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c05008&rft_dat=%3Cproquest_cross%3E3072816771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081397449&rft_id=info:pmid/38934735&rfr_iscdi=true |