Achieving Ultra‐Broadband Sunlight‐Like Emission in Single‐Phase Phosphors: The Interplay of Structure and Luminescence

The quest for artificial light sources mimicking sunlight has been a long‐standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost‐prohibitive and bulky. Therefore, the development of a series of sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (38), p.e2406164-n/a
Hauptverfasser: Liu, Shuifu, Li, Liyi, Qin, Xinghui, Du, Rongkai, Sun, Yifan, Xie, Shixing, Wang, Jiaqi, Molokeev, Maxim S., Xi, Shibo, Bünzli, Jean‐Claude G., Zhou, Lei, Wu, Mingmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2406164
container_title Advanced materials (Weinheim)
container_volume 36
creator Liu, Shuifu
Li, Liyi
Qin, Xinghui
Du, Rongkai
Sun, Yifan
Xie, Shixing
Wang, Jiaqi
Molokeev, Maxim S.
Xi, Shibo
Bünzli, Jean‐Claude G.
Zhou, Lei
Wu, Mingmei
description The quest for artificial light sources mimicking sunlight has been a long‐standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost‐prohibitive and bulky. Therefore, the development of a series of single‐phase phosphors Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2+ (x = 0‐0.75) with sunlight‐like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum   spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half‐maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight‐like emission due to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad‐spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture. This research work develops ultra‐broadband sunlight‐like emission Ca9LiMg1‐xAl2x/3(PO4)7:Eu2+ phosphors with a 330 nm full width at half maximum using a heterovalent substitution strategy. The phosphors’ unique luminescence makes the resulting white LEDs ideal for portable photodetection devices. Its high effectiveness is demonstrated by the precise identification of dye patterns via broad‐spectrum testing of organic dyes, making it a top choice for mimicking sunlight.
doi_str_mv 10.1002/adma.202406164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072799194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072799194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-3dc58a8d82d5f92fbc5f2837402de1faa5df5ee360cae4d3ac7305b3ba8c12103</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EotvClSOyxIVLFv_NxtyWttBKi6i07dly7EnjkjhbO2m1ByQegWfkSerVliJx4TTSzDefZvRD6A0lc0oI-2Bcb-aMMEFKWopnaEYlo4UgSj5HM6K4LFQpqgN0mNINIUSVpHyJDnilmCipmKEfS9t6uPPhGl91YzS_f_76FAfjahMcXk-h89ftmJsr_x3wae9T8kPAPuB1XukgTy5akwBftEPatENMH_FlC_g8jBA3ndniocHrMU52nCLgnXQ19T5AshAsvEIvGtMleP1Yj9DV59PL47Ni9e3L-fFyVVgmK1FwZ2VlKlcxJxvFmtrKhlV8IQhzQBtjpGskAC-JNSAcN3bBiax5bSpLGSX8CL3fezdxuJ0gjTp_YqHrTIBhSpqTBVsoRZXI6Lt_0JthiiFfpzmlTEgupMzUfE_ZOKQUodGb6HsTt5oSvQtG74LRT8HkhbeP2qnuwT3hf5LIgNoD976D7X90ennydflX_gBORp5C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453455</pqid></control><display><type>article</type><title>Achieving Ultra‐Broadband Sunlight‐Like Emission in Single‐Phase Phosphors: The Interplay of Structure and Luminescence</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Shuifu ; Li, Liyi ; Qin, Xinghui ; Du, Rongkai ; Sun, Yifan ; Xie, Shixing ; Wang, Jiaqi ; Molokeev, Maxim S. ; Xi, Shibo ; Bünzli, Jean‐Claude G. ; Zhou, Lei ; Wu, Mingmei</creator><creatorcontrib>Liu, Shuifu ; Li, Liyi ; Qin, Xinghui ; Du, Rongkai ; Sun, Yifan ; Xie, Shixing ; Wang, Jiaqi ; Molokeev, Maxim S. ; Xi, Shibo ; Bünzli, Jean‐Claude G. ; Zhou, Lei ; Wu, Mingmei</creatorcontrib><description>The quest for artificial light sources mimicking sunlight has been a long‐standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost‐prohibitive and bulky. Therefore, the development of a series of single‐phase phosphors Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2+ (x = 0‐0.75) with sunlight‐like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum   spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half‐maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight‐like emission due to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad‐spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture. This research work develops ultra‐broadband sunlight‐like emission Ca9LiMg1‐xAl2x/3(PO4)7:Eu2+ phosphors with a 330 nm full width at half maximum using a heterovalent substitution strategy. The phosphors’ unique luminescence makes the resulting white LEDs ideal for portable photodetection devices. Its high effectiveness is demonstrated by the precise identification of dye patterns via broad‐spectrum testing of organic dyes, making it a top choice for mimicking sunlight.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202406164</identifier><identifier>PMID: 38924614</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Agriculture ; artificial light source ; Artificial neural networks ; Broadband ; Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2 ; convolutional neural network analysis ; Dyes ; Emission analysis ; Light sources ; mimicking sunlight ; Network analysis ; Phosphors ; Portable equipment ; portable photodetection devices ; Simulators ; Spectrum analysis ; Substitutes ; Sunlight</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (38), p.e2406164-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2584-3dc58a8d82d5f92fbc5f2837402de1faa5df5ee360cae4d3ac7305b3ba8c12103</cites><orcidid>0000-0003-2219-1365 ; 0000-0002-8521-3237 ; 0000-0003-0140-3402 ; 0000-0001-8087-3925 ; 0000-0001-7556-2807 ; 0000-0001-6942-5363 ; 0000-0002-7282-3394 ; 0000-0002-8297-0945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202406164$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202406164$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38924614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shuifu</creatorcontrib><creatorcontrib>Li, Liyi</creatorcontrib><creatorcontrib>Qin, Xinghui</creatorcontrib><creatorcontrib>Du, Rongkai</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Xie, Shixing</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Molokeev, Maxim S.</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Bünzli, Jean‐Claude G.</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Wu, Mingmei</creatorcontrib><title>Achieving Ultra‐Broadband Sunlight‐Like Emission in Single‐Phase Phosphors: The Interplay of Structure and Luminescence</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The quest for artificial light sources mimicking sunlight has been a long‐standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost‐prohibitive and bulky. Therefore, the development of a series of single‐phase phosphors Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2+ (x = 0‐0.75) with sunlight‐like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum   spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half‐maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight‐like emission due to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad‐spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture. This research work develops ultra‐broadband sunlight‐like emission Ca9LiMg1‐xAl2x/3(PO4)7:Eu2+ phosphors with a 330 nm full width at half maximum using a heterovalent substitution strategy. The phosphors’ unique luminescence makes the resulting white LEDs ideal for portable photodetection devices. Its high effectiveness is demonstrated by the precise identification of dye patterns via broad‐spectrum testing of organic dyes, making it a top choice for mimicking sunlight.</description><subject>Absorption spectroscopy</subject><subject>Agriculture</subject><subject>artificial light source</subject><subject>Artificial neural networks</subject><subject>Broadband</subject><subject>Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2</subject><subject>convolutional neural network analysis</subject><subject>Dyes</subject><subject>Emission analysis</subject><subject>Light sources</subject><subject>mimicking sunlight</subject><subject>Network analysis</subject><subject>Phosphors</subject><subject>Portable equipment</subject><subject>portable photodetection devices</subject><subject>Simulators</subject><subject>Spectrum analysis</subject><subject>Substitutes</subject><subject>Sunlight</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc9u1DAQhy0EotvClSOyxIVLFv_NxtyWttBKi6i07dly7EnjkjhbO2m1ByQegWfkSerVliJx4TTSzDefZvRD6A0lc0oI-2Bcb-aMMEFKWopnaEYlo4UgSj5HM6K4LFQpqgN0mNINIUSVpHyJDnilmCipmKEfS9t6uPPhGl91YzS_f_76FAfjahMcXk-h89ftmJsr_x3wae9T8kPAPuB1XukgTy5akwBftEPatENMH_FlC_g8jBA3ndniocHrMU52nCLgnXQ19T5AshAsvEIvGtMleP1Yj9DV59PL47Ni9e3L-fFyVVgmK1FwZ2VlKlcxJxvFmtrKhlV8IQhzQBtjpGskAC-JNSAcN3bBiax5bSpLGSX8CL3fezdxuJ0gjTp_YqHrTIBhSpqTBVsoRZXI6Lt_0JthiiFfpzmlTEgupMzUfE_ZOKQUodGb6HsTt5oSvQtG74LRT8HkhbeP2qnuwT3hf5LIgNoD976D7X90ennydflX_gBORp5C</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Shuifu</creator><creator>Li, Liyi</creator><creator>Qin, Xinghui</creator><creator>Du, Rongkai</creator><creator>Sun, Yifan</creator><creator>Xie, Shixing</creator><creator>Wang, Jiaqi</creator><creator>Molokeev, Maxim S.</creator><creator>Xi, Shibo</creator><creator>Bünzli, Jean‐Claude G.</creator><creator>Zhou, Lei</creator><creator>Wu, Mingmei</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2219-1365</orcidid><orcidid>https://orcid.org/0000-0002-8521-3237</orcidid><orcidid>https://orcid.org/0000-0003-0140-3402</orcidid><orcidid>https://orcid.org/0000-0001-8087-3925</orcidid><orcidid>https://orcid.org/0000-0001-7556-2807</orcidid><orcidid>https://orcid.org/0000-0001-6942-5363</orcidid><orcidid>https://orcid.org/0000-0002-7282-3394</orcidid><orcidid>https://orcid.org/0000-0002-8297-0945</orcidid></search><sort><creationdate>20240901</creationdate><title>Achieving Ultra‐Broadband Sunlight‐Like Emission in Single‐Phase Phosphors: The Interplay of Structure and Luminescence</title><author>Liu, Shuifu ; Li, Liyi ; Qin, Xinghui ; Du, Rongkai ; Sun, Yifan ; Xie, Shixing ; Wang, Jiaqi ; Molokeev, Maxim S. ; Xi, Shibo ; Bünzli, Jean‐Claude G. ; Zhou, Lei ; Wu, Mingmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-3dc58a8d82d5f92fbc5f2837402de1faa5df5ee360cae4d3ac7305b3ba8c12103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Agriculture</topic><topic>artificial light source</topic><topic>Artificial neural networks</topic><topic>Broadband</topic><topic>Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2</topic><topic>convolutional neural network analysis</topic><topic>Dyes</topic><topic>Emission analysis</topic><topic>Light sources</topic><topic>mimicking sunlight</topic><topic>Network analysis</topic><topic>Phosphors</topic><topic>Portable equipment</topic><topic>portable photodetection devices</topic><topic>Simulators</topic><topic>Spectrum analysis</topic><topic>Substitutes</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuifu</creatorcontrib><creatorcontrib>Li, Liyi</creatorcontrib><creatorcontrib>Qin, Xinghui</creatorcontrib><creatorcontrib>Du, Rongkai</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Xie, Shixing</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Molokeev, Maxim S.</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Bünzli, Jean‐Claude G.</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Wu, Mingmei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuifu</au><au>Li, Liyi</au><au>Qin, Xinghui</au><au>Du, Rongkai</au><au>Sun, Yifan</au><au>Xie, Shixing</au><au>Wang, Jiaqi</au><au>Molokeev, Maxim S.</au><au>Xi, Shibo</au><au>Bünzli, Jean‐Claude G.</au><au>Zhou, Lei</au><au>Wu, Mingmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Ultra‐Broadband Sunlight‐Like Emission in Single‐Phase Phosphors: The Interplay of Structure and Luminescence</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>38</issue><spage>e2406164</spage><epage>n/a</epage><pages>e2406164-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The quest for artificial light sources mimicking sunlight has been a long‐standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost‐prohibitive and bulky. Therefore, the development of a series of single‐phase phosphors Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2+ (x = 0‐0.75) with sunlight‐like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum   spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half‐maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight‐like emission due to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad‐spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture. This research work develops ultra‐broadband sunlight‐like emission Ca9LiMg1‐xAl2x/3(PO4)7:Eu2+ phosphors with a 330 nm full width at half maximum using a heterovalent substitution strategy. The phosphors’ unique luminescence makes the resulting white LEDs ideal for portable photodetection devices. Its high effectiveness is demonstrated by the precise identification of dye patterns via broad‐spectrum testing of organic dyes, making it a top choice for mimicking sunlight.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38924614</pmid><doi>10.1002/adma.202406164</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2219-1365</orcidid><orcidid>https://orcid.org/0000-0002-8521-3237</orcidid><orcidid>https://orcid.org/0000-0003-0140-3402</orcidid><orcidid>https://orcid.org/0000-0001-8087-3925</orcidid><orcidid>https://orcid.org/0000-0001-7556-2807</orcidid><orcidid>https://orcid.org/0000-0001-6942-5363</orcidid><orcidid>https://orcid.org/0000-0002-7282-3394</orcidid><orcidid>https://orcid.org/0000-0002-8297-0945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (38), p.e2406164-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3072799194
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Agriculture
artificial light source
Artificial neural networks
Broadband
Ca9LiMg1‐xAl2x/3(PO4)7:0.1Eu2
convolutional neural network analysis
Dyes
Emission analysis
Light sources
mimicking sunlight
Network analysis
Phosphors
Portable equipment
portable photodetection devices
Simulators
Spectrum analysis
Substitutes
Sunlight
title Achieving Ultra‐Broadband Sunlight‐Like Emission in Single‐Phase Phosphors: The Interplay of Structure and Luminescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Ultra%E2%80%90Broadband%20Sunlight%E2%80%90Like%20Emission%20in%20Single%E2%80%90Phase%20Phosphors:%20The%20Interplay%20of%20Structure%20and%20Luminescence&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Shuifu&rft.date=2024-09-01&rft.volume=36&rft.issue=38&rft.spage=e2406164&rft.epage=n/a&rft.pages=e2406164-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202406164&rft_dat=%3Cproquest_cross%3E3072799194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112453455&rft_id=info:pmid/38924614&rfr_iscdi=true