The contribution of NaV1.6 to the efficacy of voltage‐gated sodium channel inhibitors in wild type and NaV1.6 gain‐of‐function (GOF) mouse seizure control
Background and Purpose Inhibitors of voltage‐gated sodium channels (NaVs) are important anti‐epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non‐selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means o...
Gespeichert in:
Veröffentlicht in: | British journal of pharmacology 2024-10, Vol.181 (20), p.3993-4011 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4011 |
---|---|
container_issue | 20 |
container_start_page | 3993 |
container_title | British journal of pharmacology |
container_volume | 181 |
creator | Johnson, James P. Focken, Thilo Karimi Tari, Parisa Dube, Celine Goodchild, Samuel J. Andrez, Jean‐Christophe Bankar, Girish Burford, Kristen Chang, Elaine Chowdhury, Sultan Christabel, Jessica Dean, Richard Boer, Gina Dehnhardt, Christoph Gong, Wei Grimwood, Michael Hussainkhel, Angela Jia, Qi Khakh, Kuldip Lee, Stephanie Li, Jenny Lin, Sophia Lindgren, Andrea Lofstrand, Verner Mezeyova, Janette Nelkenbrecher, Karen Shuart, Noah Gregory Sojo, Luis Sun, Shaoyi Waldbrook, Matthew Wesolowski, Steven Wilson, Michael Xie, Zhiwei Zenova, Alla Zhang, Wei Scott, Fiona L. Cutts, Alison J. Sherrington, Robin P. Winquist, Raymond Cohen, Charles J. Empfield, James R. |
description | Background and Purpose
Inhibitors of voltage‐gated sodium channels (NaVs) are important anti‐epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non‐selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs.
Experimental Approach
We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain‐of‐function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild‐type mice.
Key Results
Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6‐Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild‐type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms.
Conclusions and Implications
Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti‐seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies. |
doi_str_mv | 10.1111/bph.16481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072798866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114472462</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2211-cc0fa7b97b5a7ff87bf62e53d9638b50a18bc7fda9838911ba239f1fd1ff40323</originalsourceid><addsrcrecordid>eNpdUc1O3DAYtFArdUs59A0scaGHLP7iJHaOFPEnIeiBcrVsx941ytohdkDLiUfgEXg2ngTvQi_9Dv5GmvF45EHoJ5A55DlUw3IOTcVhB82gYk1RUw5f0IwQwgoAzr-h7zHeEZJJVs_Q683SYB18Gp2akgseB4uv5C3MG5wCTpk11jot9XrDPIQ-yYV5e35ZyGQ6HEPnphXWS-m96bHzS6dcCmPMED-6vsNpPRgsfffPdCGdz9eDzYedvN6-eXB2ffoLr8IUDY7GPU3jZ6jQ_0Bfreyj2fvcu-jv6cnN8XlxeX12cXx0WQxlCVBoTaxkqmWqlsxazpRtSlPTrm0oVzWRwJVmtpMtp7wFULKkrQXbgbUVoSXdRQcfvsMY7icTk1i5qE3fS29yLkEJK1nLedNk6f5_0rswjT6nExSgqlhZNRvDww9V_gazFsPoVnJcCyBiU5TIRYltUeL3n_MtoO8d6IuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114472462</pqid></control><display><type>article</type><title>The contribution of NaV1.6 to the efficacy of voltage‐gated sodium channel inhibitors in wild type and NaV1.6 gain‐of‐function (GOF) mouse seizure control</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Johnson, James P. ; Focken, Thilo ; Karimi Tari, Parisa ; Dube, Celine ; Goodchild, Samuel J. ; Andrez, Jean‐Christophe ; Bankar, Girish ; Burford, Kristen ; Chang, Elaine ; Chowdhury, Sultan ; Christabel, Jessica ; Dean, Richard ; Boer, Gina ; Dehnhardt, Christoph ; Gong, Wei ; Grimwood, Michael ; Hussainkhel, Angela ; Jia, Qi ; Khakh, Kuldip ; Lee, Stephanie ; Li, Jenny ; Lin, Sophia ; Lindgren, Andrea ; Lofstrand, Verner ; Mezeyova, Janette ; Nelkenbrecher, Karen ; Shuart, Noah Gregory ; Sojo, Luis ; Sun, Shaoyi ; Waldbrook, Matthew ; Wesolowski, Steven ; Wilson, Michael ; Xie, Zhiwei ; Zenova, Alla ; Zhang, Wei ; Scott, Fiona L. ; Cutts, Alison J. ; Sherrington, Robin P. ; Winquist, Raymond ; Cohen, Charles J. ; Empfield, James R.</creator><creatorcontrib>Johnson, James P. ; Focken, Thilo ; Karimi Tari, Parisa ; Dube, Celine ; Goodchild, Samuel J. ; Andrez, Jean‐Christophe ; Bankar, Girish ; Burford, Kristen ; Chang, Elaine ; Chowdhury, Sultan ; Christabel, Jessica ; Dean, Richard ; Boer, Gina ; Dehnhardt, Christoph ; Gong, Wei ; Grimwood, Michael ; Hussainkhel, Angela ; Jia, Qi ; Khakh, Kuldip ; Lee, Stephanie ; Li, Jenny ; Lin, Sophia ; Lindgren, Andrea ; Lofstrand, Verner ; Mezeyova, Janette ; Nelkenbrecher, Karen ; Shuart, Noah Gregory ; Sojo, Luis ; Sun, Shaoyi ; Waldbrook, Matthew ; Wesolowski, Steven ; Wilson, Michael ; Xie, Zhiwei ; Zenova, Alla ; Zhang, Wei ; Scott, Fiona L. ; Cutts, Alison J. ; Sherrington, Robin P. ; Winquist, Raymond ; Cohen, Charles J. ; Empfield, James R.</creatorcontrib><description>Background and Purpose
Inhibitors of voltage‐gated sodium channels (NaVs) are important anti‐epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non‐selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs.
Experimental Approach
We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain‐of‐function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild‐type mice.
Key Results
Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6‐Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild‐type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms.
Conclusions and Implications
Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti‐seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.</description><identifier>ISSN: 0007-1188</identifier><identifier>ISSN: 1476-5381</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1111/bph.16481</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Animal models ; anti‐seizure medicines ; behavioural pharmacology ; Convulsions & seizures ; Drug development ; Electroconvulsive therapy ; Epilepsy ; Interneurons ; Isoforms ; NaV1.6 ; Scn8a ; SCN8A‐DEE ; Seizures ; Sodium channels (voltage-gated) ; voltage‐gated channels</subject><ispartof>British journal of pharmacology, 2024-10, Vol.181 (20), p.3993-4011</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5762-5138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbph.16481$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbph.16481$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Johnson, James P.</creatorcontrib><creatorcontrib>Focken, Thilo</creatorcontrib><creatorcontrib>Karimi Tari, Parisa</creatorcontrib><creatorcontrib>Dube, Celine</creatorcontrib><creatorcontrib>Goodchild, Samuel J.</creatorcontrib><creatorcontrib>Andrez, Jean‐Christophe</creatorcontrib><creatorcontrib>Bankar, Girish</creatorcontrib><creatorcontrib>Burford, Kristen</creatorcontrib><creatorcontrib>Chang, Elaine</creatorcontrib><creatorcontrib>Chowdhury, Sultan</creatorcontrib><creatorcontrib>Christabel, Jessica</creatorcontrib><creatorcontrib>Dean, Richard</creatorcontrib><creatorcontrib>Boer, Gina</creatorcontrib><creatorcontrib>Dehnhardt, Christoph</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Grimwood, Michael</creatorcontrib><creatorcontrib>Hussainkhel, Angela</creatorcontrib><creatorcontrib>Jia, Qi</creatorcontrib><creatorcontrib>Khakh, Kuldip</creatorcontrib><creatorcontrib>Lee, Stephanie</creatorcontrib><creatorcontrib>Li, Jenny</creatorcontrib><creatorcontrib>Lin, Sophia</creatorcontrib><creatorcontrib>Lindgren, Andrea</creatorcontrib><creatorcontrib>Lofstrand, Verner</creatorcontrib><creatorcontrib>Mezeyova, Janette</creatorcontrib><creatorcontrib>Nelkenbrecher, Karen</creatorcontrib><creatorcontrib>Shuart, Noah Gregory</creatorcontrib><creatorcontrib>Sojo, Luis</creatorcontrib><creatorcontrib>Sun, Shaoyi</creatorcontrib><creatorcontrib>Waldbrook, Matthew</creatorcontrib><creatorcontrib>Wesolowski, Steven</creatorcontrib><creatorcontrib>Wilson, Michael</creatorcontrib><creatorcontrib>Xie, Zhiwei</creatorcontrib><creatorcontrib>Zenova, Alla</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Scott, Fiona L.</creatorcontrib><creatorcontrib>Cutts, Alison J.</creatorcontrib><creatorcontrib>Sherrington, Robin P.</creatorcontrib><creatorcontrib>Winquist, Raymond</creatorcontrib><creatorcontrib>Cohen, Charles J.</creatorcontrib><creatorcontrib>Empfield, James R.</creatorcontrib><title>The contribution of NaV1.6 to the efficacy of voltage‐gated sodium channel inhibitors in wild type and NaV1.6 gain‐of‐function (GOF) mouse seizure control</title><title>British journal of pharmacology</title><description>Background and Purpose
Inhibitors of voltage‐gated sodium channels (NaVs) are important anti‐epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non‐selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs.
Experimental Approach
We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain‐of‐function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild‐type mice.
Key Results
Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6‐Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild‐type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms.
Conclusions and Implications
Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti‐seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.</description><subject>Animal models</subject><subject>anti‐seizure medicines</subject><subject>behavioural pharmacology</subject><subject>Convulsions & seizures</subject><subject>Drug development</subject><subject>Electroconvulsive therapy</subject><subject>Epilepsy</subject><subject>Interneurons</subject><subject>Isoforms</subject><subject>NaV1.6</subject><subject>Scn8a</subject><subject>SCN8A‐DEE</subject><subject>Seizures</subject><subject>Sodium channels (voltage-gated)</subject><subject>voltage‐gated channels</subject><issn>0007-1188</issn><issn>1476-5381</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdUc1O3DAYtFArdUs59A0scaGHLP7iJHaOFPEnIeiBcrVsx941ytohdkDLiUfgEXg2ngTvQi_9Dv5GmvF45EHoJ5A55DlUw3IOTcVhB82gYk1RUw5f0IwQwgoAzr-h7zHeEZJJVs_Q683SYB18Gp2akgseB4uv5C3MG5wCTpk11jot9XrDPIQ-yYV5e35ZyGQ6HEPnphXWS-m96bHzS6dcCmPMED-6vsNpPRgsfffPdCGdz9eDzYedvN6-eXB2ffoLr8IUDY7GPU3jZ6jQ_0Bfreyj2fvcu-jv6cnN8XlxeX12cXx0WQxlCVBoTaxkqmWqlsxazpRtSlPTrm0oVzWRwJVmtpMtp7wFULKkrQXbgbUVoSXdRQcfvsMY7icTk1i5qE3fS29yLkEJK1nLedNk6f5_0rswjT6nExSgqlhZNRvDww9V_gazFsPoVnJcCyBiU5TIRYltUeL3n_MtoO8d6IuU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Johnson, James P.</creator><creator>Focken, Thilo</creator><creator>Karimi Tari, Parisa</creator><creator>Dube, Celine</creator><creator>Goodchild, Samuel J.</creator><creator>Andrez, Jean‐Christophe</creator><creator>Bankar, Girish</creator><creator>Burford, Kristen</creator><creator>Chang, Elaine</creator><creator>Chowdhury, Sultan</creator><creator>Christabel, Jessica</creator><creator>Dean, Richard</creator><creator>Boer, Gina</creator><creator>Dehnhardt, Christoph</creator><creator>Gong, Wei</creator><creator>Grimwood, Michael</creator><creator>Hussainkhel, Angela</creator><creator>Jia, Qi</creator><creator>Khakh, Kuldip</creator><creator>Lee, Stephanie</creator><creator>Li, Jenny</creator><creator>Lin, Sophia</creator><creator>Lindgren, Andrea</creator><creator>Lofstrand, Verner</creator><creator>Mezeyova, Janette</creator><creator>Nelkenbrecher, Karen</creator><creator>Shuart, Noah Gregory</creator><creator>Sojo, Luis</creator><creator>Sun, Shaoyi</creator><creator>Waldbrook, Matthew</creator><creator>Wesolowski, Steven</creator><creator>Wilson, Michael</creator><creator>Xie, Zhiwei</creator><creator>Zenova, Alla</creator><creator>Zhang, Wei</creator><creator>Scott, Fiona L.</creator><creator>Cutts, Alison J.</creator><creator>Sherrington, Robin P.</creator><creator>Winquist, Raymond</creator><creator>Cohen, Charles J.</creator><creator>Empfield, James R.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5762-5138</orcidid></search><sort><creationdate>202410</creationdate><title>The contribution of NaV1.6 to the efficacy of voltage‐gated sodium channel inhibitors in wild type and NaV1.6 gain‐of‐function (GOF) mouse seizure control</title><author>Johnson, James P. ; Focken, Thilo ; Karimi Tari, Parisa ; Dube, Celine ; Goodchild, Samuel J. ; Andrez, Jean‐Christophe ; Bankar, Girish ; Burford, Kristen ; Chang, Elaine ; Chowdhury, Sultan ; Christabel, Jessica ; Dean, Richard ; Boer, Gina ; Dehnhardt, Christoph ; Gong, Wei ; Grimwood, Michael ; Hussainkhel, Angela ; Jia, Qi ; Khakh, Kuldip ; Lee, Stephanie ; Li, Jenny ; Lin, Sophia ; Lindgren, Andrea ; Lofstrand, Verner ; Mezeyova, Janette ; Nelkenbrecher, Karen ; Shuart, Noah Gregory ; Sojo, Luis ; Sun, Shaoyi ; Waldbrook, Matthew ; Wesolowski, Steven ; Wilson, Michael ; Xie, Zhiwei ; Zenova, Alla ; Zhang, Wei ; Scott, Fiona L. ; Cutts, Alison J. ; Sherrington, Robin P. ; Winquist, Raymond ; Cohen, Charles J. ; Empfield, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2211-cc0fa7b97b5a7ff87bf62e53d9638b50a18bc7fda9838911ba239f1fd1ff40323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal models</topic><topic>anti‐seizure medicines</topic><topic>behavioural pharmacology</topic><topic>Convulsions & seizures</topic><topic>Drug development</topic><topic>Electroconvulsive therapy</topic><topic>Epilepsy</topic><topic>Interneurons</topic><topic>Isoforms</topic><topic>NaV1.6</topic><topic>Scn8a</topic><topic>SCN8A‐DEE</topic><topic>Seizures</topic><topic>Sodium channels (voltage-gated)</topic><topic>voltage‐gated channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, James P.</creatorcontrib><creatorcontrib>Focken, Thilo</creatorcontrib><creatorcontrib>Karimi Tari, Parisa</creatorcontrib><creatorcontrib>Dube, Celine</creatorcontrib><creatorcontrib>Goodchild, Samuel J.</creatorcontrib><creatorcontrib>Andrez, Jean‐Christophe</creatorcontrib><creatorcontrib>Bankar, Girish</creatorcontrib><creatorcontrib>Burford, Kristen</creatorcontrib><creatorcontrib>Chang, Elaine</creatorcontrib><creatorcontrib>Chowdhury, Sultan</creatorcontrib><creatorcontrib>Christabel, Jessica</creatorcontrib><creatorcontrib>Dean, Richard</creatorcontrib><creatorcontrib>Boer, Gina</creatorcontrib><creatorcontrib>Dehnhardt, Christoph</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Grimwood, Michael</creatorcontrib><creatorcontrib>Hussainkhel, Angela</creatorcontrib><creatorcontrib>Jia, Qi</creatorcontrib><creatorcontrib>Khakh, Kuldip</creatorcontrib><creatorcontrib>Lee, Stephanie</creatorcontrib><creatorcontrib>Li, Jenny</creatorcontrib><creatorcontrib>Lin, Sophia</creatorcontrib><creatorcontrib>Lindgren, Andrea</creatorcontrib><creatorcontrib>Lofstrand, Verner</creatorcontrib><creatorcontrib>Mezeyova, Janette</creatorcontrib><creatorcontrib>Nelkenbrecher, Karen</creatorcontrib><creatorcontrib>Shuart, Noah Gregory</creatorcontrib><creatorcontrib>Sojo, Luis</creatorcontrib><creatorcontrib>Sun, Shaoyi</creatorcontrib><creatorcontrib>Waldbrook, Matthew</creatorcontrib><creatorcontrib>Wesolowski, Steven</creatorcontrib><creatorcontrib>Wilson, Michael</creatorcontrib><creatorcontrib>Xie, Zhiwei</creatorcontrib><creatorcontrib>Zenova, Alla</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Scott, Fiona L.</creatorcontrib><creatorcontrib>Cutts, Alison J.</creatorcontrib><creatorcontrib>Sherrington, Robin P.</creatorcontrib><creatorcontrib>Winquist, Raymond</creatorcontrib><creatorcontrib>Cohen, Charles J.</creatorcontrib><creatorcontrib>Empfield, James R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, James P.</au><au>Focken, Thilo</au><au>Karimi Tari, Parisa</au><au>Dube, Celine</au><au>Goodchild, Samuel J.</au><au>Andrez, Jean‐Christophe</au><au>Bankar, Girish</au><au>Burford, Kristen</au><au>Chang, Elaine</au><au>Chowdhury, Sultan</au><au>Christabel, Jessica</au><au>Dean, Richard</au><au>Boer, Gina</au><au>Dehnhardt, Christoph</au><au>Gong, Wei</au><au>Grimwood, Michael</au><au>Hussainkhel, Angela</au><au>Jia, Qi</au><au>Khakh, Kuldip</au><au>Lee, Stephanie</au><au>Li, Jenny</au><au>Lin, Sophia</au><au>Lindgren, Andrea</au><au>Lofstrand, Verner</au><au>Mezeyova, Janette</au><au>Nelkenbrecher, Karen</au><au>Shuart, Noah Gregory</au><au>Sojo, Luis</au><au>Sun, Shaoyi</au><au>Waldbrook, Matthew</au><au>Wesolowski, Steven</au><au>Wilson, Michael</au><au>Xie, Zhiwei</au><au>Zenova, Alla</au><au>Zhang, Wei</au><au>Scott, Fiona L.</au><au>Cutts, Alison J.</au><au>Sherrington, Robin P.</au><au>Winquist, Raymond</au><au>Cohen, Charles J.</au><au>Empfield, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The contribution of NaV1.6 to the efficacy of voltage‐gated sodium channel inhibitors in wild type and NaV1.6 gain‐of‐function (GOF) mouse seizure control</atitle><jtitle>British journal of pharmacology</jtitle><date>2024-10</date><risdate>2024</risdate><volume>181</volume><issue>20</issue><spage>3993</spage><epage>4011</epage><pages>3993-4011</pages><issn>0007-1188</issn><issn>1476-5381</issn><eissn>1476-5381</eissn><abstract>Background and Purpose
Inhibitors of voltage‐gated sodium channels (NaVs) are important anti‐epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non‐selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs.
Experimental Approach
We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain‐of‐function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild‐type mice.
Key Results
Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6‐Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild‐type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms.
Conclusions and Implications
Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti‐seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/bph.16481</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5762-5138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1188 |
ispartof | British journal of pharmacology, 2024-10, Vol.181 (20), p.3993-4011 |
issn | 0007-1188 1476-5381 1476-5381 |
language | eng |
recordid | cdi_proquest_miscellaneous_3072798866 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Animal models anti‐seizure medicines behavioural pharmacology Convulsions & seizures Drug development Electroconvulsive therapy Epilepsy Interneurons Isoforms NaV1.6 Scn8a SCN8A‐DEE Seizures Sodium channels (voltage-gated) voltage‐gated channels |
title | The contribution of NaV1.6 to the efficacy of voltage‐gated sodium channel inhibitors in wild type and NaV1.6 gain‐of‐function (GOF) mouse seizure control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20contribution%20of%20NaV1.6%20to%20the%20efficacy%20of%20voltage%E2%80%90gated%20sodium%20channel%20inhibitors%20in%20wild%20type%20and%20NaV1.6%20gain%E2%80%90of%E2%80%90function%20(GOF)%20mouse%20seizure%20control&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Johnson,%20James%20P.&rft.date=2024-10&rft.volume=181&rft.issue=20&rft.spage=3993&rft.epage=4011&rft.pages=3993-4011&rft.issn=0007-1188&rft.eissn=1476-5381&rft_id=info:doi/10.1111/bph.16481&rft_dat=%3Cproquest_wiley%3E3114472462%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114472462&rft_id=info:pmid/&rfr_iscdi=true |