Synthesis, structural, and optical behavior of erbium‐doped silicophosphate glasses for photonics applications

Erbium‐incorporated silicophosphate glasses are very desirable in principal sectors such as photonics, optoelectronics, lasers, and illuminating diodes. The focus of the current investigation has been on determining how the erbium dopant affects the optical, physical, and structural characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Luminescence (Chichester, England) England), 2024-06, Vol.39 (6), p.e4802-n/a
Hauptverfasser: Bouabdalli, El Mahdi, El Jouad, Mohamed, Touhtouh, Samira, Chellakhi, Abdelkhalek, Hajjaji, Abdelowahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e4802
container_title Luminescence (Chichester, England)
container_volume 39
creator Bouabdalli, El Mahdi
El Jouad, Mohamed
Touhtouh, Samira
Chellakhi, Abdelkhalek
Hajjaji, Abdelowahed
description Erbium‐incorporated silicophosphate glasses are very desirable in principal sectors such as photonics, optoelectronics, lasers, and illuminating diodes. The focus of the current investigation has been on determining how the erbium dopant affects the optical, physical, and structural characteristics of the silicophosphate‐based glasses. The pure silicophosphate glasses and doped with various contents of erbium were prepared by the sol–gel process in this work. The noncrystalline character of the glasses synthesized was confirmed by the XRD patterns that were obtained. The optical measurement showed that the addition of trivalent erbium ions resulted in an increase in the refractive index of the samples and a decrease in their energy band gap values. It demonstrated the presence of P–O–P linkage stretching vibration modes that were both symmetrical and asymmetrical, P–O in PO4 bending vibration modes, OH group elongating and flexure vibrations, and P–O–H water absorption in glasses. The theoretical values of the optical basicity (Ʌth) increased from 0.465 to 0.472, while the values of the interaction parameter (A) decreased from 0.218 to 0.214 Å−3$$ {\overset{\ocirc }{\mathrm{A}}}^{-3} $$. Silicophosphate glasses doped with trivalent erbium ions show promise as optoelectronic and optical filter system materials. The optical base values of erbium‐doped silicophosphate glasses increase from 0.465 to 0.472 as the erbium concentration rises. However, the oxygen packing density decreases from 69.2794 to 65.5461 (g.atom)/L with increasing erbium concentration. This decrease can be attributed to the larger ionic radius of Er3+ compared to Si4+ and P5+ network formers, resulting in looser packing of oxygen ions in the glass structure. The network‐modifying role of Er3+ affects the configuration of bridging and non‐bridging oxygen atoms.
doi_str_mv 10.1002/bio.4802
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072798813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072798813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1912-fc59d0b536551b3ec44f73ce4921b5e7d13a95fffac3a36bfd0b03e2bf785e7f3</originalsourceid><addsrcrecordid>eNp10ctq3DAUBmBREpor9AmCIJss4kQXy5dlM7RpIJBF2rWR5KOOgsdSdOyE2fUR-ox9kmqaGxSykpA-fg7nJ-QTZ2ecMXFufDgrGyY-kF2uhChqUcqt17tUO2QP8Y4xVlVV-5HsyKYVsq7YLom363FaAno8pTil2U5z0sMp1WNPQ5y81QM1sNQPPiQaHIVk_Lz68-t3HyL0FP3gbYjLgHGpJ6A_B40ISF3W-XUKo7dIdYyZ6cmHEQ_IttMDwuHzuU9-fP3yffGtuL65vFp8vi4sb7konFVtz4ySlVLcSLBl6WppoWwFNwrqnkvdKuectlLLyriMmQRhXN3kbyf3yclTbkzhfgacupVHC8OgRwgzdpLVom6bhstMj_-jd2FOY55uo3jVcqbqt0CbAmIC18XkVzqtO866TQtdbqHbtJDp0XPgbFbQv8KXtWdQPIFHP8D63aDu4urmX-Bf9D2TxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071691057</pqid></control><display><type>article</type><title>Synthesis, structural, and optical behavior of erbium‐doped silicophosphate glasses for photonics applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bouabdalli, El Mahdi ; El Jouad, Mohamed ; Touhtouh, Samira ; Chellakhi, Abdelkhalek ; Hajjaji, Abdelowahed</creator><creatorcontrib>Bouabdalli, El Mahdi ; El Jouad, Mohamed ; Touhtouh, Samira ; Chellakhi, Abdelkhalek ; Hajjaji, Abdelowahed</creatorcontrib><description>Erbium‐incorporated silicophosphate glasses are very desirable in principal sectors such as photonics, optoelectronics, lasers, and illuminating diodes. The focus of the current investigation has been on determining how the erbium dopant affects the optical, physical, and structural characteristics of the silicophosphate‐based glasses. The pure silicophosphate glasses and doped with various contents of erbium were prepared by the sol–gel process in this work. The noncrystalline character of the glasses synthesized was confirmed by the XRD patterns that were obtained. The optical measurement showed that the addition of trivalent erbium ions resulted in an increase in the refractive index of the samples and a decrease in their energy band gap values. It demonstrated the presence of P–O–P linkage stretching vibration modes that were both symmetrical and asymmetrical, P–O in PO4 bending vibration modes, OH group elongating and flexure vibrations, and P–O–H water absorption in glasses. The theoretical values of the optical basicity (Ʌth) increased from 0.465 to 0.472, while the values of the interaction parameter (A) decreased from 0.218 to 0.214 Å−3$$ {\overset{\ocirc }{\mathrm{A}}}^{-3} $$. Silicophosphate glasses doped with trivalent erbium ions show promise as optoelectronic and optical filter system materials. The optical base values of erbium‐doped silicophosphate glasses increase from 0.465 to 0.472 as the erbium concentration rises. However, the oxygen packing density decreases from 69.2794 to 65.5461 (g.atom)/L with increasing erbium concentration. This decrease can be attributed to the larger ionic radius of Er3+ compared to Si4+ and P5+ network formers, resulting in looser packing of oxygen ions in the glass structure. The network‐modifying role of Er3+ affects the configuration of bridging and non‐bridging oxygen atoms.</description><identifier>ISSN: 1522-7235</identifier><identifier>ISSN: 1522-7243</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.4802</identifier><identifier>PMID: 38923760</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Bending vibration ; Deformation ; Energy bands ; Energy gap ; Erbium ; Erbium - chemistry ; FTIR spectroscopy ; Gels ; Glass - chemistry ; Interaction parameters ; Ions ; Lasers ; Optical basicity ; Optical filters ; Optical measurement ; Optical Phenomena ; optical properties ; Optics and Photonics ; Optoelectronics ; Phosphates ; Phosphates - chemistry ; Photonics ; Refractive index ; Refractivity ; silicophosphate glasses ; Sol-gel processes ; Vibration ; Vibration mode ; Vibrations ; Water absorption ; X-Ray Diffraction ; XRD analysis</subject><ispartof>Luminescence (Chichester, England), 2024-06, Vol.39 (6), p.e4802-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1912-fc59d0b536551b3ec44f73ce4921b5e7d13a95fffac3a36bfd0b03e2bf785e7f3</cites><orcidid>0000-0002-4773-1287 ; 0000-0002-4863-4753 ; 0000-0002-6446-6980 ; 0000-0002-1140-6837 ; 0000-0002-5172-5306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbio.4802$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbio.4802$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38923760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouabdalli, El Mahdi</creatorcontrib><creatorcontrib>El Jouad, Mohamed</creatorcontrib><creatorcontrib>Touhtouh, Samira</creatorcontrib><creatorcontrib>Chellakhi, Abdelkhalek</creatorcontrib><creatorcontrib>Hajjaji, Abdelowahed</creatorcontrib><title>Synthesis, structural, and optical behavior of erbium‐doped silicophosphate glasses for photonics applications</title><title>Luminescence (Chichester, England)</title><addtitle>Luminescence</addtitle><description>Erbium‐incorporated silicophosphate glasses are very desirable in principal sectors such as photonics, optoelectronics, lasers, and illuminating diodes. The focus of the current investigation has been on determining how the erbium dopant affects the optical, physical, and structural characteristics of the silicophosphate‐based glasses. The pure silicophosphate glasses and doped with various contents of erbium were prepared by the sol–gel process in this work. The noncrystalline character of the glasses synthesized was confirmed by the XRD patterns that were obtained. The optical measurement showed that the addition of trivalent erbium ions resulted in an increase in the refractive index of the samples and a decrease in their energy band gap values. It demonstrated the presence of P–O–P linkage stretching vibration modes that were both symmetrical and asymmetrical, P–O in PO4 bending vibration modes, OH group elongating and flexure vibrations, and P–O–H water absorption in glasses. The theoretical values of the optical basicity (Ʌth) increased from 0.465 to 0.472, while the values of the interaction parameter (A) decreased from 0.218 to 0.214 Å−3$$ {\overset{\ocirc }{\mathrm{A}}}^{-3} $$. Silicophosphate glasses doped with trivalent erbium ions show promise as optoelectronic and optical filter system materials. The optical base values of erbium‐doped silicophosphate glasses increase from 0.465 to 0.472 as the erbium concentration rises. However, the oxygen packing density decreases from 69.2794 to 65.5461 (g.atom)/L with increasing erbium concentration. This decrease can be attributed to the larger ionic radius of Er3+ compared to Si4+ and P5+ network formers, resulting in looser packing of oxygen ions in the glass structure. The network‐modifying role of Er3+ affects the configuration of bridging and non‐bridging oxygen atoms.</description><subject>Bending vibration</subject><subject>Deformation</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Erbium</subject><subject>Erbium - chemistry</subject><subject>FTIR spectroscopy</subject><subject>Gels</subject><subject>Glass - chemistry</subject><subject>Interaction parameters</subject><subject>Ions</subject><subject>Lasers</subject><subject>Optical basicity</subject><subject>Optical filters</subject><subject>Optical measurement</subject><subject>Optical Phenomena</subject><subject>optical properties</subject><subject>Optics and Photonics</subject><subject>Optoelectronics</subject><subject>Phosphates</subject><subject>Phosphates - chemistry</subject><subject>Photonics</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>silicophosphate glasses</subject><subject>Sol-gel processes</subject><subject>Vibration</subject><subject>Vibration mode</subject><subject>Vibrations</subject><subject>Water absorption</subject><subject>X-Ray Diffraction</subject><subject>XRD analysis</subject><issn>1522-7235</issn><issn>1522-7243</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctq3DAUBmBREpor9AmCIJss4kQXy5dlM7RpIJBF2rWR5KOOgsdSdOyE2fUR-ox9kmqaGxSykpA-fg7nJ-QTZ2ecMXFufDgrGyY-kF2uhChqUcqt17tUO2QP8Y4xVlVV-5HsyKYVsq7YLom363FaAno8pTil2U5z0sMp1WNPQ5y81QM1sNQPPiQaHIVk_Lz68-t3HyL0FP3gbYjLgHGpJ6A_B40ISF3W-XUKo7dIdYyZ6cmHEQ_IttMDwuHzuU9-fP3yffGtuL65vFp8vi4sb7konFVtz4ySlVLcSLBl6WppoWwFNwrqnkvdKuectlLLyriMmQRhXN3kbyf3yclTbkzhfgacupVHC8OgRwgzdpLVom6bhstMj_-jd2FOY55uo3jVcqbqt0CbAmIC18XkVzqtO866TQtdbqHbtJDp0XPgbFbQv8KXtWdQPIFHP8D63aDu4urmX-Bf9D2TxA</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Bouabdalli, El Mahdi</creator><creator>El Jouad, Mohamed</creator><creator>Touhtouh, Samira</creator><creator>Chellakhi, Abdelkhalek</creator><creator>Hajjaji, Abdelowahed</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4773-1287</orcidid><orcidid>https://orcid.org/0000-0002-4863-4753</orcidid><orcidid>https://orcid.org/0000-0002-6446-6980</orcidid><orcidid>https://orcid.org/0000-0002-1140-6837</orcidid><orcidid>https://orcid.org/0000-0002-5172-5306</orcidid></search><sort><creationdate>202406</creationdate><title>Synthesis, structural, and optical behavior of erbium‐doped silicophosphate glasses for photonics applications</title><author>Bouabdalli, El Mahdi ; El Jouad, Mohamed ; Touhtouh, Samira ; Chellakhi, Abdelkhalek ; Hajjaji, Abdelowahed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1912-fc59d0b536551b3ec44f73ce4921b5e7d13a95fffac3a36bfd0b03e2bf785e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bending vibration</topic><topic>Deformation</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Erbium</topic><topic>Erbium - chemistry</topic><topic>FTIR spectroscopy</topic><topic>Gels</topic><topic>Glass - chemistry</topic><topic>Interaction parameters</topic><topic>Ions</topic><topic>Lasers</topic><topic>Optical basicity</topic><topic>Optical filters</topic><topic>Optical measurement</topic><topic>Optical Phenomena</topic><topic>optical properties</topic><topic>Optics and Photonics</topic><topic>Optoelectronics</topic><topic>Phosphates</topic><topic>Phosphates - chemistry</topic><topic>Photonics</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>silicophosphate glasses</topic><topic>Sol-gel processes</topic><topic>Vibration</topic><topic>Vibration mode</topic><topic>Vibrations</topic><topic>Water absorption</topic><topic>X-Ray Diffraction</topic><topic>XRD analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouabdalli, El Mahdi</creatorcontrib><creatorcontrib>El Jouad, Mohamed</creatorcontrib><creatorcontrib>Touhtouh, Samira</creatorcontrib><creatorcontrib>Chellakhi, Abdelkhalek</creatorcontrib><creatorcontrib>Hajjaji, Abdelowahed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouabdalli, El Mahdi</au><au>El Jouad, Mohamed</au><au>Touhtouh, Samira</au><au>Chellakhi, Abdelkhalek</au><au>Hajjaji, Abdelowahed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, structural, and optical behavior of erbium‐doped silicophosphate glasses for photonics applications</atitle><jtitle>Luminescence (Chichester, England)</jtitle><addtitle>Luminescence</addtitle><date>2024-06</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>e4802</spage><epage>n/a</epage><pages>e4802-n/a</pages><issn>1522-7235</issn><issn>1522-7243</issn><eissn>1522-7243</eissn><abstract>Erbium‐incorporated silicophosphate glasses are very desirable in principal sectors such as photonics, optoelectronics, lasers, and illuminating diodes. The focus of the current investigation has been on determining how the erbium dopant affects the optical, physical, and structural characteristics of the silicophosphate‐based glasses. The pure silicophosphate glasses and doped with various contents of erbium were prepared by the sol–gel process in this work. The noncrystalline character of the glasses synthesized was confirmed by the XRD patterns that were obtained. The optical measurement showed that the addition of trivalent erbium ions resulted in an increase in the refractive index of the samples and a decrease in their energy band gap values. It demonstrated the presence of P–O–P linkage stretching vibration modes that were both symmetrical and asymmetrical, P–O in PO4 bending vibration modes, OH group elongating and flexure vibrations, and P–O–H water absorption in glasses. The theoretical values of the optical basicity (Ʌth) increased from 0.465 to 0.472, while the values of the interaction parameter (A) decreased from 0.218 to 0.214 Å−3$$ {\overset{\ocirc }{\mathrm{A}}}^{-3} $$. Silicophosphate glasses doped with trivalent erbium ions show promise as optoelectronic and optical filter system materials. The optical base values of erbium‐doped silicophosphate glasses increase from 0.465 to 0.472 as the erbium concentration rises. However, the oxygen packing density decreases from 69.2794 to 65.5461 (g.atom)/L with increasing erbium concentration. This decrease can be attributed to the larger ionic radius of Er3+ compared to Si4+ and P5+ network formers, resulting in looser packing of oxygen ions in the glass structure. The network‐modifying role of Er3+ affects the configuration of bridging and non‐bridging oxygen atoms.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38923760</pmid><doi>10.1002/bio.4802</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4773-1287</orcidid><orcidid>https://orcid.org/0000-0002-4863-4753</orcidid><orcidid>https://orcid.org/0000-0002-6446-6980</orcidid><orcidid>https://orcid.org/0000-0002-1140-6837</orcidid><orcidid>https://orcid.org/0000-0002-5172-5306</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-7235
ispartof Luminescence (Chichester, England), 2024-06, Vol.39 (6), p.e4802-n/a
issn 1522-7235
1522-7243
1522-7243
language eng
recordid cdi_proquest_miscellaneous_3072798813
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bending vibration
Deformation
Energy bands
Energy gap
Erbium
Erbium - chemistry
FTIR spectroscopy
Gels
Glass - chemistry
Interaction parameters
Ions
Lasers
Optical basicity
Optical filters
Optical measurement
Optical Phenomena
optical properties
Optics and Photonics
Optoelectronics
Phosphates
Phosphates - chemistry
Photonics
Refractive index
Refractivity
silicophosphate glasses
Sol-gel processes
Vibration
Vibration mode
Vibrations
Water absorption
X-Ray Diffraction
XRD analysis
title Synthesis, structural, and optical behavior of erbium‐doped silicophosphate glasses for photonics applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20structural,%20and%20optical%20behavior%20of%20erbium%E2%80%90doped%20silicophosphate%20glasses%20for%20photonics%20applications&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Bouabdalli,%20El%20Mahdi&rft.date=2024-06&rft.volume=39&rft.issue=6&rft.spage=e4802&rft.epage=n/a&rft.pages=e4802-n/a&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.4802&rft_dat=%3Cproquest_cross%3E3072798813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071691057&rft_id=info:pmid/38923760&rfr_iscdi=true