Photochemistry of N-aryl and N-alkyl dibenzothiophene sulfoximines
N-phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiophene S-oxide upon irradiation with UV-A light, and dibenzothiophene S-oxide upon further irradiation releases triplet atomic oxygen. Thus, N-phenyl dibenzothiophene sulfoximine exhibits a rare dual-...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N-phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiophene S-oxide upon irradiation with UV-A light, and dibenzothiophene S-oxide upon further irradiation releases triplet atomic oxygen. Thus, N-phenyl dibenzothiophene sulfoximine exhibits a rare dual-release capability in its photochemistry. In this work, N-substituted dibenzothiophene sulfoximine derivatives are irradiated with UV-A light to compare their photochemistry and quantum yield of dibenzothiophene S-oxide production with that of N-phenyl dibenzothiophene sulfoximine. Both N-aryl and N-alkyl derivatives of dibenzothiophene sulfoximine are examined to observe their effects on the quantum yield of the photolysis reaction. Adding electron withdrawing N-aryl substituents is shown to increase the quantum yield of dibenzothiophene S-oxide production, while adding electron donating N-aryl substituents is shown to decrease the quantum yield. The quantum yield was slightly lowered or not increased by most N-alkyl substituents. Furthermore, the quantum yield was not augmented by branching and steric hindrance effects associated with the N-alkyl substituents. These results suggest that electronic modulation of the sulfoximine bonds affects the observed photolysis reaction. |
---|---|
ISSN: | 0031-8655 1751-1097 1751-1097 |
DOI: | 10.1111/php.13978 |