Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2

The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-07, Vol.58 (27), p.12091-12100
Hauptverfasser: Dai, Wenjing, Zhang, Boge, Ji, Jian, Zhu, Tianle, Liu, Biyuan, Gan, Yanling, Xiao, Fei, Zhang, Jiarui, Huang, Haibao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12100
container_issue 27
container_start_page 12091
container_title Environmental science & technology
container_volume 58
creator Dai, Wenjing
Zhang, Boge
Ji, Jian
Zhu, Tianle
Liu, Biyuan
Gan, Yanling
Xiao, Fei
Zhang, Jiarui
Huang, Haibao
description The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.
doi_str_mv 10.1021/acs.est.4c02482
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072001123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072001123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-4dc90987da33c4c4a63a0fa7465b10b7744d42d34390bacf648f7ff35355db463</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKfX3ga8EaTz5KNtejnq_ICNiih4V9I0gYwu0abdxX69mRsIXp2Xw_MeDg9C1wRmBCi5lyrMdBhmXAHlgp6gCUkpJKlIySmaABCWFCz7PEcXIawBgDIQE2QXxlhltRtwtfNO40VnN9bJwXqHq63u8cpVFG-txA9-bDqNV96GYex18qZDTNIpjV97P2j12_EGz2PaalzKvokL6Vpc6opeojMju6CvjnOKPh4X7-VzsqyeXsr5MpFE0CHhrSqgEHkrGVNccZkxCUbmPEsbAk2ec95y2jLOCmikMhkXJjeGpSxN24ZnbIpuD3e_ev89RiP1xgalu0467cdQM8hptEEoi-jNP3Ttx97F7yIlCCtE5CJ1d6Ci4T-AQL3XXu-X--ZRO_sBAX91uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081398011</pqid></control><display><type>article</type><title>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</title><source>American Chemical Society Journals</source><creator>Dai, Wenjing ; Zhang, Boge ; Ji, Jian ; Zhu, Tianle ; Liu, Biyuan ; Gan, Yanling ; Xiao, Fei ; Zhang, Jiarui ; Huang, Haibao</creator><creatorcontrib>Dai, Wenjing ; Zhang, Boge ; Ji, Jian ; Zhu, Tianle ; Liu, Biyuan ; Gan, Yanling ; Xiao, Fei ; Zhang, Jiarui ; Huang, Haibao</creatorcontrib><description>The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c02482</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Activated carbon ; Carbon ; Catalysts ; Catalytic activity ; Catalytic converters ; Cerium oxides ; Decomposition ; Decomposition reactions ; Hydrophobicity ; Intermediates ; Lattice vacancies ; Manganese dioxide ; Moisture resistance ; Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere ; Oxygen ; Ozone</subject><ispartof>Environmental science &amp; technology, 2024-07, Vol.58 (27), p.12091-12100</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3834-8929 ; 0000-0002-0792-2871 ; 0000-0002-9259-7179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c02482$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c02482$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Dai, Wenjing</creatorcontrib><creatorcontrib>Zhang, Boge</creatorcontrib><creatorcontrib>Ji, Jian</creatorcontrib><creatorcontrib>Zhu, Tianle</creatorcontrib><creatorcontrib>Liu, Biyuan</creatorcontrib><creatorcontrib>Gan, Yanling</creatorcontrib><creatorcontrib>Xiao, Fei</creatorcontrib><creatorcontrib>Zhang, Jiarui</creatorcontrib><creatorcontrib>Huang, Haibao</creatorcontrib><title>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.</description><subject>Activated carbon</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Cerium oxides</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Hydrophobicity</subject><subject>Intermediates</subject><subject>Lattice vacancies</subject><subject>Manganese dioxide</subject><subject>Moisture resistance</subject><subject>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</subject><subject>Oxygen</subject><subject>Ozone</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOKfX3ga8EaTz5KNtejnq_ICNiih4V9I0gYwu0abdxX69mRsIXp2Xw_MeDg9C1wRmBCi5lyrMdBhmXAHlgp6gCUkpJKlIySmaABCWFCz7PEcXIawBgDIQE2QXxlhltRtwtfNO40VnN9bJwXqHq63u8cpVFG-txA9-bDqNV96GYex18qZDTNIpjV97P2j12_EGz2PaalzKvokL6Vpc6opeojMju6CvjnOKPh4X7-VzsqyeXsr5MpFE0CHhrSqgEHkrGVNccZkxCUbmPEsbAk2ec95y2jLOCmikMhkXJjeGpSxN24ZnbIpuD3e_ev89RiP1xgalu0467cdQM8hptEEoi-jNP3Ttx97F7yIlCCtE5CJ1d6Ci4T-AQL3XXu-X--ZRO_sBAX91uA</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Dai, Wenjing</creator><creator>Zhang, Boge</creator><creator>Ji, Jian</creator><creator>Zhu, Tianle</creator><creator>Liu, Biyuan</creator><creator>Gan, Yanling</creator><creator>Xiao, Fei</creator><creator>Zhang, Jiarui</creator><creator>Huang, Haibao</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3834-8929</orcidid><orcidid>https://orcid.org/0000-0002-0792-2871</orcidid><orcidid>https://orcid.org/0000-0002-9259-7179</orcidid></search><sort><creationdate>20240709</creationdate><title>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</title><author>Dai, Wenjing ; Zhang, Boge ; Ji, Jian ; Zhu, Tianle ; Liu, Biyuan ; Gan, Yanling ; Xiao, Fei ; Zhang, Jiarui ; Huang, Haibao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-4dc90987da33c4c4a63a0fa7465b10b7744d42d34390bacf648f7ff35355db463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Cerium oxides</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Hydrophobicity</topic><topic>Intermediates</topic><topic>Lattice vacancies</topic><topic>Manganese dioxide</topic><topic>Moisture resistance</topic><topic>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</topic><topic>Oxygen</topic><topic>Ozone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wenjing</creatorcontrib><creatorcontrib>Zhang, Boge</creatorcontrib><creatorcontrib>Ji, Jian</creatorcontrib><creatorcontrib>Zhu, Tianle</creatorcontrib><creatorcontrib>Liu, Biyuan</creatorcontrib><creatorcontrib>Gan, Yanling</creatorcontrib><creatorcontrib>Xiao, Fei</creatorcontrib><creatorcontrib>Zhang, Jiarui</creatorcontrib><creatorcontrib>Huang, Haibao</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wenjing</au><au>Zhang, Boge</au><au>Ji, Jian</au><au>Zhu, Tianle</au><au>Liu, Biyuan</au><au>Gan, Yanling</au><au>Xiao, Fei</au><au>Zhang, Jiarui</au><au>Huang, Haibao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-07-09</date><risdate>2024</risdate><volume>58</volume><issue>27</issue><spage>12091</spage><epage>12100</epage><pages>12091-12100</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c02482</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3834-8929</orcidid><orcidid>https://orcid.org/0000-0002-0792-2871</orcidid><orcidid>https://orcid.org/0000-0002-9259-7179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-07, Vol.58 (27), p.12091-12100
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3072001123
source American Chemical Society Journals
subjects Activated carbon
Carbon
Catalysts
Catalytic activity
Catalytic converters
Cerium oxides
Decomposition
Decomposition reactions
Hydrophobicity
Intermediates
Lattice vacancies
Manganese dioxide
Moisture resistance
Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere
Oxygen
Ozone
title Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Ozone%20Elimination%20Over%20MnO2%20via%20Double%20Moisture-Resistance%20Protection%20of%20Active%20Carbon%20and%20CeO2&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Dai,%20Wenjing&rft.date=2024-07-09&rft.volume=58&rft.issue=27&rft.spage=12091&rft.epage=12100&rft.pages=12091-12100&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c02482&rft_dat=%3Cproquest_acs_j%3E3072001123%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081398011&rft_id=info:pmid/&rfr_iscdi=true