Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2
The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-07, Vol.58 (27), p.12091-12100 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12100 |
---|---|
container_issue | 27 |
container_start_page | 12091 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Dai, Wenjing Zhang, Boge Ji, Jian Zhu, Tianle Liu, Biyuan Gan, Yanling Xiao, Fei Zhang, Jiarui Huang, Haibao |
description | The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments. |
doi_str_mv | 10.1021/acs.est.4c02482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072001123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072001123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-4dc90987da33c4c4a63a0fa7465b10b7744d42d34390bacf648f7ff35355db463</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKfX3ga8EaTz5KNtejnq_ICNiih4V9I0gYwu0abdxX69mRsIXp2Xw_MeDg9C1wRmBCi5lyrMdBhmXAHlgp6gCUkpJKlIySmaABCWFCz7PEcXIawBgDIQE2QXxlhltRtwtfNO40VnN9bJwXqHq63u8cpVFG-txA9-bDqNV96GYex18qZDTNIpjV97P2j12_EGz2PaalzKvokL6Vpc6opeojMju6CvjnOKPh4X7-VzsqyeXsr5MpFE0CHhrSqgEHkrGVNccZkxCUbmPEsbAk2ec95y2jLOCmikMhkXJjeGpSxN24ZnbIpuD3e_ev89RiP1xgalu0467cdQM8hptEEoi-jNP3Ttx97F7yIlCCtE5CJ1d6Ci4T-AQL3XXu-X--ZRO_sBAX91uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081398011</pqid></control><display><type>article</type><title>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</title><source>American Chemical Society Journals</source><creator>Dai, Wenjing ; Zhang, Boge ; Ji, Jian ; Zhu, Tianle ; Liu, Biyuan ; Gan, Yanling ; Xiao, Fei ; Zhang, Jiarui ; Huang, Haibao</creator><creatorcontrib>Dai, Wenjing ; Zhang, Boge ; Ji, Jian ; Zhu, Tianle ; Liu, Biyuan ; Gan, Yanling ; Xiao, Fei ; Zhang, Jiarui ; Huang, Haibao</creatorcontrib><description>The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c02482</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Activated carbon ; Carbon ; Catalysts ; Catalytic activity ; Catalytic converters ; Cerium oxides ; Decomposition ; Decomposition reactions ; Hydrophobicity ; Intermediates ; Lattice vacancies ; Manganese dioxide ; Moisture resistance ; Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere ; Oxygen ; Ozone</subject><ispartof>Environmental science & technology, 2024-07, Vol.58 (27), p.12091-12100</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3834-8929 ; 0000-0002-0792-2871 ; 0000-0002-9259-7179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c02482$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c02482$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Dai, Wenjing</creatorcontrib><creatorcontrib>Zhang, Boge</creatorcontrib><creatorcontrib>Ji, Jian</creatorcontrib><creatorcontrib>Zhu, Tianle</creatorcontrib><creatorcontrib>Liu, Biyuan</creatorcontrib><creatorcontrib>Gan, Yanling</creatorcontrib><creatorcontrib>Xiao, Fei</creatorcontrib><creatorcontrib>Zhang, Jiarui</creatorcontrib><creatorcontrib>Huang, Haibao</creatorcontrib><title>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.</description><subject>Activated carbon</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Cerium oxides</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Hydrophobicity</subject><subject>Intermediates</subject><subject>Lattice vacancies</subject><subject>Manganese dioxide</subject><subject>Moisture resistance</subject><subject>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</subject><subject>Oxygen</subject><subject>Ozone</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOKfX3ga8EaTz5KNtejnq_ICNiih4V9I0gYwu0abdxX69mRsIXp2Xw_MeDg9C1wRmBCi5lyrMdBhmXAHlgp6gCUkpJKlIySmaABCWFCz7PEcXIawBgDIQE2QXxlhltRtwtfNO40VnN9bJwXqHq63u8cpVFG-txA9-bDqNV96GYex18qZDTNIpjV97P2j12_EGz2PaalzKvokL6Vpc6opeojMju6CvjnOKPh4X7-VzsqyeXsr5MpFE0CHhrSqgEHkrGVNccZkxCUbmPEsbAk2ec95y2jLOCmikMhkXJjeGpSxN24ZnbIpuD3e_ev89RiP1xgalu0467cdQM8hptEEoi-jNP3Ttx97F7yIlCCtE5CJ1d6Ci4T-AQL3XXu-X--ZRO_sBAX91uA</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Dai, Wenjing</creator><creator>Zhang, Boge</creator><creator>Ji, Jian</creator><creator>Zhu, Tianle</creator><creator>Liu, Biyuan</creator><creator>Gan, Yanling</creator><creator>Xiao, Fei</creator><creator>Zhang, Jiarui</creator><creator>Huang, Haibao</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3834-8929</orcidid><orcidid>https://orcid.org/0000-0002-0792-2871</orcidid><orcidid>https://orcid.org/0000-0002-9259-7179</orcidid></search><sort><creationdate>20240709</creationdate><title>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</title><author>Dai, Wenjing ; Zhang, Boge ; Ji, Jian ; Zhu, Tianle ; Liu, Biyuan ; Gan, Yanling ; Xiao, Fei ; Zhang, Jiarui ; Huang, Haibao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-4dc90987da33c4c4a63a0fa7465b10b7744d42d34390bacf648f7ff35355db463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Cerium oxides</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Hydrophobicity</topic><topic>Intermediates</topic><topic>Lattice vacancies</topic><topic>Manganese dioxide</topic><topic>Moisture resistance</topic><topic>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</topic><topic>Oxygen</topic><topic>Ozone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wenjing</creatorcontrib><creatorcontrib>Zhang, Boge</creatorcontrib><creatorcontrib>Ji, Jian</creatorcontrib><creatorcontrib>Zhu, Tianle</creatorcontrib><creatorcontrib>Liu, Biyuan</creatorcontrib><creatorcontrib>Gan, Yanling</creatorcontrib><creatorcontrib>Xiao, Fei</creatorcontrib><creatorcontrib>Zhang, Jiarui</creatorcontrib><creatorcontrib>Huang, Haibao</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wenjing</au><au>Zhang, Boge</au><au>Ji, Jian</au><au>Zhu, Tianle</au><au>Liu, Biyuan</au><au>Gan, Yanling</au><au>Xiao, Fei</au><au>Zhang, Jiarui</au><au>Huang, Haibao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-07-09</date><risdate>2024</risdate><volume>58</volume><issue>27</issue><spage>12091</spage><epage>12100</epage><pages>12091-12100</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O2 2–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c02482</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3834-8929</orcidid><orcidid>https://orcid.org/0000-0002-0792-2871</orcidid><orcidid>https://orcid.org/0000-0002-9259-7179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-07, Vol.58 (27), p.12091-12100 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3072001123 |
source | American Chemical Society Journals |
subjects | Activated carbon Carbon Catalysts Catalytic activity Catalytic converters Cerium oxides Decomposition Decomposition reactions Hydrophobicity Intermediates Lattice vacancies Manganese dioxide Moisture resistance Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere Oxygen Ozone |
title | Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Ozone%20Elimination%20Over%20MnO2%20via%20Double%20Moisture-Resistance%20Protection%20of%20Active%20Carbon%20and%20CeO2&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Dai,%20Wenjing&rft.date=2024-07-09&rft.volume=58&rft.issue=27&rft.spage=12091&rft.epage=12100&rft.pages=12091-12100&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c02482&rft_dat=%3Cproquest_acs_j%3E3072001123%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081398011&rft_id=info:pmid/&rfr_iscdi=true |