Improving Aqueous Zinc Ion Batteries with Alkali Metal Ions

Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (26), p.33559-33570
Hauptverfasser: Xue, Mengyuan, Ren, Xiaozhe, Zhang, Yuyang, Liu, Jing, Yan, Tianying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33570
container_issue 26
container_start_page 33559
container_title ACS applied materials & interfaces
container_volume 16
creator Xue, Mengyuan
Ren, Xiaozhe
Zhang, Yuyang
Liu, Jing
Yan, Tianying
description Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn–Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm–2 of 1 mAh·cm–2 and 190 h at 30 mA·cm–2 of 2 mAh·cm–2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.
doi_str_mv 10.1021/acsami.4c05372
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072000592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072000592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-b83827a8ac2921ec5b2bc67780f8bd184f5af6f9b4e795e588ad56711b996f8b3</originalsourceid><addsrcrecordid>eNp1kEtPAyEUhYnR2FrdujQsjclUYGCAuKqNjyY1bnTjhgBllDqPCjMa_700U925uje53zk59wBwitEUI4IvtY269lNqEcs52QNjLCnNBGFk_2-ndASOYlwjVOQEsUMwyoXEVJJiDK4W9Sa0n755hbOP3rV9hC--sXDRNvBad50L3kX45bs3OKvedeXhg-t0tb3HY3BQ6iq6k92cgOfbm6f5fbZ8vFvMZ8tME8y6zIhcEK6FtkQS7CwzxNiCc4FKYVZY0JLpsiiloY5L5pgQesUKjrGRskhIPgHng29KmjLGTtU-WldVutkGVjniBCHEJEnodEBtaGMMrlSb4GsdvhVGaluYGgpTu8KS4Gzn3Zvarf7w34YScDEASajWbR-a9Op_bj9XBnRT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072000592</pqid></control><display><type>article</type><title>Improving Aqueous Zinc Ion Batteries with Alkali Metal Ions</title><source>ACS Publications</source><creator>Xue, Mengyuan ; Ren, Xiaozhe ; Zhang, Yuyang ; Liu, Jing ; Yan, Tianying</creator><creatorcontrib>Xue, Mengyuan ; Ren, Xiaozhe ; Zhang, Yuyang ; Liu, Jing ; Yan, Tianying</creatorcontrib><description>Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn–Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm–2 of 1 mAh·cm–2 and 190 h at 30 mA·cm–2 of 2 mAh·cm–2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05372</identifier><identifier>PMID: 38914926</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (26), p.33559-33570</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-b83827a8ac2921ec5b2bc67780f8bd184f5af6f9b4e795e588ad56711b996f8b3</cites><orcidid>0000-0002-2708-7906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c05372$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c05372$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38914926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Mengyuan</creatorcontrib><creatorcontrib>Ren, Xiaozhe</creatorcontrib><creatorcontrib>Zhang, Yuyang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Yan, Tianying</creatorcontrib><title>Improving Aqueous Zinc Ion Batteries with Alkali Metal Ions</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn–Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm–2 of 1 mAh·cm–2 and 190 h at 30 mA·cm–2 of 2 mAh·cm–2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAyEUhYnR2FrdujQsjclUYGCAuKqNjyY1bnTjhgBllDqPCjMa_700U925uje53zk59wBwitEUI4IvtY269lNqEcs52QNjLCnNBGFk_2-ndASOYlwjVOQEsUMwyoXEVJJiDK4W9Sa0n755hbOP3rV9hC--sXDRNvBad50L3kX45bs3OKvedeXhg-t0tb3HY3BQ6iq6k92cgOfbm6f5fbZ8vFvMZ8tME8y6zIhcEK6FtkQS7CwzxNiCc4FKYVZY0JLpsiiloY5L5pgQesUKjrGRskhIPgHng29KmjLGTtU-WldVutkGVjniBCHEJEnodEBtaGMMrlSb4GsdvhVGaluYGgpTu8KS4Gzn3Zvarf7w34YScDEASajWbR-a9Op_bj9XBnRT</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Xue, Mengyuan</creator><creator>Ren, Xiaozhe</creator><creator>Zhang, Yuyang</creator><creator>Liu, Jing</creator><creator>Yan, Tianying</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2708-7906</orcidid></search><sort><creationdate>20240703</creationdate><title>Improving Aqueous Zinc Ion Batteries with Alkali Metal Ions</title><author>Xue, Mengyuan ; Ren, Xiaozhe ; Zhang, Yuyang ; Liu, Jing ; Yan, Tianying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-b83827a8ac2921ec5b2bc67780f8bd184f5af6f9b4e795e588ad56711b996f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Mengyuan</creatorcontrib><creatorcontrib>Ren, Xiaozhe</creatorcontrib><creatorcontrib>Zhang, Yuyang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Yan, Tianying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Mengyuan</au><au>Ren, Xiaozhe</au><au>Zhang, Yuyang</au><au>Liu, Jing</au><au>Yan, Tianying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Aqueous Zinc Ion Batteries with Alkali Metal Ions</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>16</volume><issue>26</issue><spage>33559</spage><epage>33570</epage><pages>33559-33570</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn–Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm–2 of 1 mAh·cm–2 and 190 h at 30 mA·cm–2 of 2 mAh·cm–2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38914926</pmid><doi>10.1021/acsami.4c05372</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2708-7906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.33559-33570
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3072000592
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Improving Aqueous Zinc Ion Batteries with Alkali Metal Ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Aqueous%20Zinc%20Ion%20Batteries%20with%20Alkali%20Metal%20Ions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xue,%20Mengyuan&rft.date=2024-07-03&rft.volume=16&rft.issue=26&rft.spage=33559&rft.epage=33570&rft.pages=33559-33570&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05372&rft_dat=%3Cproquest_cross%3E3072000592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072000592&rft_id=info:pmid/38914926&rfr_iscdi=true