Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting

In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-07, Vol.16 (27), p.13148-13160
Hauptverfasser: Liu, Xinghui, Hoang, Dang Kim, Nguyen, Quynh Anh T, Dinh Phuc, Do, Kim, Seong-Gon, Nam, Pham Cam, Kumar, Ashwani, Zhang, Fuchun, Zhi, Chunyi, Bui, Viet Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13160
container_issue 27
container_start_page 13148
container_title Nanoscale
container_volume 16
creator Liu, Xinghui
Hoang, Dang Kim
Nguyen, Quynh Anh T
Dinh Phuc, Do
Kim, Seong-Gon
Nam, Pham Cam
Kumar, Ashwani
Zhang, Fuchun
Zhi, Chunyi
Bui, Viet Q
description In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising Δ values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (Δ ) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies ( ) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor ( ), derived from d electron count ( ) and electronegativity ( ), provides a quantifiable relationship with catalytic activity, where a lower corresponds to enhanced reaction kinetics. Specifically, values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.
doi_str_mv 10.1039/d4nr01241k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3071516045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071516045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-875b8b191ea0890e3d27901c5c114532c8612b9b97910e00a8eedd3a35280af13</originalsourceid><addsrcrecordid>eNpdkU9PGzEQxa2qqNDQSz9AZamXqtLC2N5_PkahLYgIJATnldeeJE43dmp7g_LtMYRy4DSj0W-ent4j5CuDMwZCnpvSBWC8ZH8_kBMOJRRCNPzj216Xx-RzjGuAWopafCLHopWMS6hPyDA1O-U0GmpGNRQq-Q3VKqlhH1Ok3tFlUNuVTVbnc-jzwdkUrEG68IGiWx2eV3sT_BIdxZ0fxmQzt7OKPqqEgcbtYFOybnlKjhZqiPjldU7Iw-9f97PLYn7752o2nRc6O05F21R92zPJUEErAYXhjQSmK81YWQmu25rxXvaykQwQQLWIxgglKt6CWjAxIT8Outvg_40YU7exUeMwKId-jJ2AhlWshiw2Id_foWs_BpfdPVOt4DmxMlM_D5QOPsaAi24b7EaFfcege-6guyhv7l46uM7wt1fJsd-geUP_hy6eADdvgaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078329364</pqid></control><display><type>article</type><title>Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Xinghui ; Hoang, Dang Kim ; Nguyen, Quynh Anh T ; Dinh Phuc, Do ; Kim, Seong-Gon ; Nam, Pham Cam ; Kumar, Ashwani ; Zhang, Fuchun ; Zhi, Chunyi ; Bui, Viet Q</creator><creatorcontrib>Liu, Xinghui ; Hoang, Dang Kim ; Nguyen, Quynh Anh T ; Dinh Phuc, Do ; Kim, Seong-Gon ; Nam, Pham Cam ; Kumar, Ashwani ; Zhang, Fuchun ; Zhi, Chunyi ; Bui, Viet Q</creatorcontrib><description>In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising Δ values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (Δ ) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies ( ) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor ( ), derived from d electron count ( ) and electronegativity ( ), provides a quantifiable relationship with catalytic activity, where a lower corresponds to enhanced reaction kinetics. Specifically, values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01241k</identifier><identifier>PMID: 38912906</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon ; Carbon nitride ; Catalysts ; Catalytic activity ; Density functional theory ; Effectiveness ; Electrocatalysts ; Electronegativity ; Gibbs free energy ; Hydrogen evolution reactions ; Reaction kinetics ; Thermodynamics ; Water splitting</subject><ispartof>Nanoscale, 2024-07, Vol.16 (27), p.13148-13160</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-875b8b191ea0890e3d27901c5c114532c8612b9b97910e00a8eedd3a35280af13</cites><orcidid>0000-0001-6766-5953 ; 0000-0002-7257-544X ; 0000-0002-8372-8528 ; 0000-0002-1629-0319 ; 0000-0001-5325-8660 ; 0000-0001-7744-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38912906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xinghui</creatorcontrib><creatorcontrib>Hoang, Dang Kim</creatorcontrib><creatorcontrib>Nguyen, Quynh Anh T</creatorcontrib><creatorcontrib>Dinh Phuc, Do</creatorcontrib><creatorcontrib>Kim, Seong-Gon</creatorcontrib><creatorcontrib>Nam, Pham Cam</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Zhang, Fuchun</creatorcontrib><creatorcontrib>Zhi, Chunyi</creatorcontrib><creatorcontrib>Bui, Viet Q</creatorcontrib><title>Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising Δ values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (Δ ) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies ( ) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor ( ), derived from d electron count ( ) and electronegativity ( ), provides a quantifiable relationship with catalytic activity, where a lower corresponds to enhanced reaction kinetics. Specifically, values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Density functional theory</subject><subject>Effectiveness</subject><subject>Electrocatalysts</subject><subject>Electronegativity</subject><subject>Gibbs free energy</subject><subject>Hydrogen evolution reactions</subject><subject>Reaction kinetics</subject><subject>Thermodynamics</subject><subject>Water splitting</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU9PGzEQxa2qqNDQSz9AZamXqtLC2N5_PkahLYgIJATnldeeJE43dmp7g_LtMYRy4DSj0W-ent4j5CuDMwZCnpvSBWC8ZH8_kBMOJRRCNPzj216Xx-RzjGuAWopafCLHopWMS6hPyDA1O-U0GmpGNRQq-Q3VKqlhH1Ok3tFlUNuVTVbnc-jzwdkUrEG68IGiWx2eV3sT_BIdxZ0fxmQzt7OKPqqEgcbtYFOybnlKjhZqiPjldU7Iw-9f97PLYn7752o2nRc6O05F21R92zPJUEErAYXhjQSmK81YWQmu25rxXvaykQwQQLWIxgglKt6CWjAxIT8Outvg_40YU7exUeMwKId-jJ2AhlWshiw2Id_foWs_BpfdPVOt4DmxMlM_D5QOPsaAi24b7EaFfcege-6guyhv7l46uM7wt1fJsd-geUP_hy6eADdvgaU</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Liu, Xinghui</creator><creator>Hoang, Dang Kim</creator><creator>Nguyen, Quynh Anh T</creator><creator>Dinh Phuc, Do</creator><creator>Kim, Seong-Gon</creator><creator>Nam, Pham Cam</creator><creator>Kumar, Ashwani</creator><creator>Zhang, Fuchun</creator><creator>Zhi, Chunyi</creator><creator>Bui, Viet Q</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6766-5953</orcidid><orcidid>https://orcid.org/0000-0002-7257-544X</orcidid><orcidid>https://orcid.org/0000-0002-8372-8528</orcidid><orcidid>https://orcid.org/0000-0002-1629-0319</orcidid><orcidid>https://orcid.org/0000-0001-5325-8660</orcidid><orcidid>https://orcid.org/0000-0001-7744-1400</orcidid></search><sort><creationdate>20240711</creationdate><title>Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting</title><author>Liu, Xinghui ; Hoang, Dang Kim ; Nguyen, Quynh Anh T ; Dinh Phuc, Do ; Kim, Seong-Gon ; Nam, Pham Cam ; Kumar, Ashwani ; Zhang, Fuchun ; Zhi, Chunyi ; Bui, Viet Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-875b8b191ea0890e3d27901c5c114532c8612b9b97910e00a8eedd3a35280af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Density functional theory</topic><topic>Effectiveness</topic><topic>Electrocatalysts</topic><topic>Electronegativity</topic><topic>Gibbs free energy</topic><topic>Hydrogen evolution reactions</topic><topic>Reaction kinetics</topic><topic>Thermodynamics</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinghui</creatorcontrib><creatorcontrib>Hoang, Dang Kim</creatorcontrib><creatorcontrib>Nguyen, Quynh Anh T</creatorcontrib><creatorcontrib>Dinh Phuc, Do</creatorcontrib><creatorcontrib>Kim, Seong-Gon</creatorcontrib><creatorcontrib>Nam, Pham Cam</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Zhang, Fuchun</creatorcontrib><creatorcontrib>Zhi, Chunyi</creatorcontrib><creatorcontrib>Bui, Viet Q</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xinghui</au><au>Hoang, Dang Kim</au><au>Nguyen, Quynh Anh T</au><au>Dinh Phuc, Do</au><au>Kim, Seong-Gon</au><au>Nam, Pham Cam</au><au>Kumar, Ashwani</au><au>Zhang, Fuchun</au><au>Zhi, Chunyi</au><au>Bui, Viet Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>16</volume><issue>27</issue><spage>13148</spage><epage>13160</epage><pages>13148-13160</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising Δ values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (Δ ) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies ( ) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor ( ), derived from d electron count ( ) and electronegativity ( ), provides a quantifiable relationship with catalytic activity, where a lower corresponds to enhanced reaction kinetics. Specifically, values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38912906</pmid><doi>10.1039/d4nr01241k</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6766-5953</orcidid><orcidid>https://orcid.org/0000-0002-7257-544X</orcidid><orcidid>https://orcid.org/0000-0002-8372-8528</orcidid><orcidid>https://orcid.org/0000-0002-1629-0319</orcidid><orcidid>https://orcid.org/0000-0001-5325-8660</orcidid><orcidid>https://orcid.org/0000-0001-7744-1400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-07, Vol.16 (27), p.13148-13160
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_miscellaneous_3071516045
source Royal Society Of Chemistry Journals 2008-
subjects Carbon
Carbon nitride
Catalysts
Catalytic activity
Density functional theory
Effectiveness
Electrocatalysts
Electronegativity
Gibbs free energy
Hydrogen evolution reactions
Reaction kinetics
Thermodynamics
Water splitting
title Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20dual-atom%20catalysts%20on%20graphitic%20carbon%20nitride%20for%20enhanced%20hydrogen%20evolution%20via%20water%20splitting&rft.jtitle=Nanoscale&rft.au=Liu,%20Xinghui&rft.date=2024-07-11&rft.volume=16&rft.issue=27&rft.spage=13148&rft.epage=13160&rft.pages=13148-13160&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01241k&rft_dat=%3Cproquest_cross%3E3071516045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078329364&rft_id=info:pmid/38912906&rfr_iscdi=true