Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial

To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe′CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary anaesthesia and analgesia 2024-09, Vol.51 (5), p.408-416
Hauptverfasser: Donati, Pablo A., Tarragona, Lisa, Araos, Joaquín, Zaccagnini, Andrea C., Díaz, Alfredo, Nigro, Nestor, Sández, Ignacio, Plotnikow, Gustavo, Staffieri, Francesco, Otero, Pablo E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 5
container_start_page 408
container_title Veterinary anaesthesia and analgesia
container_volume 51
creator Donati, Pablo A.
Tarragona, Lisa
Araos, Joaquín
Zaccagnini, Andrea C.
Díaz, Alfredo
Nigro, Nestor
Sández, Ignacio
Plotnikow, Gustavo
Staffieri, Francesco
Otero, Pablo E.
description To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe′CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔPaw) guided. Randomized, nonblinded, crossover, clinical trial. A total of 19 client-owned dogs anesthetized for castration and ovariohysterectomy. After a stable 10 minute baseline, each dog was mechanically ventilated with a VT selection strategy, randomized to a constant VT of 15 mL kg–1 of actual body mass (VTBW) or ΔPaw-guided VT (VTΔP) of 7–8 cmH2O. Both strategies used an inspiratory time of 1 second, 20% end-inspiratory pause, 4 cmH2O positive end-expiratory pressure and fraction of inspired oxygen of 0.4. Respiratory frequency was adjusted to maintain Pe′CO2 between 35 and 40 mmHg. Respiratory mechanics, arterial blood gases and Pe′CO2/PaCO2 were assessed. Continuous variables are presented as mean ± SD or median (interquartile range; quartiles 1–3), depending on distribution, and compared with Wilcoxon signed-rank tests. The VT was significantly higher in dogs ventilated with VTΔP than with VTBW strategy (17.20 ± 4.04 versus 15.03 ± 0.60 mL kg–1, p = 0.036). CstRS was significantly higher with VTΔP than with VTBW strategy [2.47 (1.86–2.86) versus 2.25 (1.79–2.58) mL cmH2O−1 kg–1, p = 0.011]. There were no differences in Pe′CO2/PaCO2 between VTΔP and VTBW strategies (0.94 ± 0.06 versus 0.92 ± 0.06, p = 0.094). No discernible difference in ΔPaw was noted between the strategies. While no apparent difference was observed in the Pe′CO2/PaCO2 between the VT selection strategies employed, CstRS significantly increased during the VTΔP approach. A future trial should explore if VTΔP improves perioperative gas exchange and prevents lung damage.
doi_str_mv 10.1016/j.vaa.2024.05.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3071514287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1467298724000837</els_id><sourcerecordid>3071514287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-abeac6b28615a7a04556c7286ad367b102e1799e0aadc40691130a45d9c3c3153</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwA7ggH7kk2EmcbOBUVXxJlbiUszWxpxuvnHixnVTh7_HHmP1gj5xszzzzzozfLHsreCG4aD7sigWgKHlZF1wWnDfPsmtRN21edp18frlv2qvsVYw7zkXbSf4yu6o2nSBcXGd_HqwBxxbv5hFZRIc6WT8xO51jufZTCt45NGzBKVkHR2A7W0OhfmUm2MVOW7YPGOMckLAQ58hAp5mke29W9oR2O6SD6oDg0rAymDCmAZP9TSowGTaiHmCyGpxbL50oZ_w2fmS3LBDkxyOug4_RUxuWggX3OnvxCC7im_N5k_388vnh7lt-_-Pr97vb-1yXlUw59Ai66ctNIyS0wGspG93SE0zVtL3gJdL_dMgBjK550wlRcail6XSlKyGrm-z9SXcf_K-ZxlejjRqdo138HFXFWyFFXW5aQsUJPY4a8FHtgx0hrEpwdfBO7RR5pw7eKS4VmUE1787ycz-iuVT8M4uATycAacnFYlBRW5w0GhvINmW8_Y_8X1xQr6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071514287</pqid></control><display><type>article</type><title>Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial</title><source>Alma/SFX Local Collection</source><creator>Donati, Pablo A. ; Tarragona, Lisa ; Araos, Joaquín ; Zaccagnini, Andrea C. ; Díaz, Alfredo ; Nigro, Nestor ; Sández, Ignacio ; Plotnikow, Gustavo ; Staffieri, Francesco ; Otero, Pablo E.</creator><creatorcontrib>Donati, Pablo A. ; Tarragona, Lisa ; Araos, Joaquín ; Zaccagnini, Andrea C. ; Díaz, Alfredo ; Nigro, Nestor ; Sández, Ignacio ; Plotnikow, Gustavo ; Staffieri, Francesco ; Otero, Pablo E.</creatorcontrib><description>To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe′CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔPaw) guided. Randomized, nonblinded, crossover, clinical trial. A total of 19 client-owned dogs anesthetized for castration and ovariohysterectomy. After a stable 10 minute baseline, each dog was mechanically ventilated with a VT selection strategy, randomized to a constant VT of 15 mL kg–1 of actual body mass (VTBW) or ΔPaw-guided VT (VTΔP) of 7–8 cmH2O. Both strategies used an inspiratory time of 1 second, 20% end-inspiratory pause, 4 cmH2O positive end-expiratory pressure and fraction of inspired oxygen of 0.4. Respiratory frequency was adjusted to maintain Pe′CO2 between 35 and 40 mmHg. Respiratory mechanics, arterial blood gases and Pe′CO2/PaCO2 were assessed. Continuous variables are presented as mean ± SD or median (interquartile range; quartiles 1–3), depending on distribution, and compared with Wilcoxon signed-rank tests. The VT was significantly higher in dogs ventilated with VTΔP than with VTBW strategy (17.20 ± 4.04 versus 15.03 ± 0.60 mL kg–1, p = 0.036). CstRS was significantly higher with VTΔP than with VTBW strategy [2.47 (1.86–2.86) versus 2.25 (1.79–2.58) mL cmH2O−1 kg–1, p = 0.011]. There were no differences in Pe′CO2/PaCO2 between VTΔP and VTBW strategies (0.94 ± 0.06 versus 0.92 ± 0.06, p = 0.094). No discernible difference in ΔPaw was noted between the strategies. While no apparent difference was observed in the Pe′CO2/PaCO2 between the VT selection strategies employed, CstRS significantly increased during the VTΔP approach. A future trial should explore if VTΔP improves perioperative gas exchange and prevents lung damage.</description><identifier>ISSN: 1467-2987</identifier><identifier>ISSN: 1467-2995</identifier><identifier>EISSN: 1467-2995</identifier><identifier>DOI: 10.1016/j.vaa.2024.05.006</identifier><identifier>PMID: 38910061</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>gas exchange ; lung volume ; mechanical ventilation ; respiratory mechanics ; tidal volume adjusting</subject><ispartof>Veterinary anaesthesia and analgesia, 2024-09, Vol.51 (5), p.408-416</ispartof><rights>2024 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia</rights><rights>Copyright © 2024 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-abeac6b28615a7a04556c7286ad367b102e1799e0aadc40691130a45d9c3c3153</cites><orcidid>0000-0003-0115-870X ; 0000-0002-9805-9769 ; 0000-0002-0901-7269 ; 0000-0003-2605-5686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38910061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donati, Pablo A.</creatorcontrib><creatorcontrib>Tarragona, Lisa</creatorcontrib><creatorcontrib>Araos, Joaquín</creatorcontrib><creatorcontrib>Zaccagnini, Andrea C.</creatorcontrib><creatorcontrib>Díaz, Alfredo</creatorcontrib><creatorcontrib>Nigro, Nestor</creatorcontrib><creatorcontrib>Sández, Ignacio</creatorcontrib><creatorcontrib>Plotnikow, Gustavo</creatorcontrib><creatorcontrib>Staffieri, Francesco</creatorcontrib><creatorcontrib>Otero, Pablo E.</creatorcontrib><title>Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial</title><title>Veterinary anaesthesia and analgesia</title><addtitle>Vet Anaesth Analg</addtitle><description>To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe′CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔPaw) guided. Randomized, nonblinded, crossover, clinical trial. A total of 19 client-owned dogs anesthetized for castration and ovariohysterectomy. After a stable 10 minute baseline, each dog was mechanically ventilated with a VT selection strategy, randomized to a constant VT of 15 mL kg–1 of actual body mass (VTBW) or ΔPaw-guided VT (VTΔP) of 7–8 cmH2O. Both strategies used an inspiratory time of 1 second, 20% end-inspiratory pause, 4 cmH2O positive end-expiratory pressure and fraction of inspired oxygen of 0.4. Respiratory frequency was adjusted to maintain Pe′CO2 between 35 and 40 mmHg. Respiratory mechanics, arterial blood gases and Pe′CO2/PaCO2 were assessed. Continuous variables are presented as mean ± SD or median (interquartile range; quartiles 1–3), depending on distribution, and compared with Wilcoxon signed-rank tests. The VT was significantly higher in dogs ventilated with VTΔP than with VTBW strategy (17.20 ± 4.04 versus 15.03 ± 0.60 mL kg–1, p = 0.036). CstRS was significantly higher with VTΔP than with VTBW strategy [2.47 (1.86–2.86) versus 2.25 (1.79–2.58) mL cmH2O−1 kg–1, p = 0.011]. There were no differences in Pe′CO2/PaCO2 between VTΔP and VTBW strategies (0.94 ± 0.06 versus 0.92 ± 0.06, p = 0.094). No discernible difference in ΔPaw was noted between the strategies. While no apparent difference was observed in the Pe′CO2/PaCO2 between the VT selection strategies employed, CstRS significantly increased during the VTΔP approach. A future trial should explore if VTΔP improves perioperative gas exchange and prevents lung damage.</description><subject>gas exchange</subject><subject>lung volume</subject><subject>mechanical ventilation</subject><subject>respiratory mechanics</subject><subject>tidal volume adjusting</subject><issn>1467-2987</issn><issn>1467-2995</issn><issn>1467-2995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEoqXwA7ggH7kk2EmcbOBUVXxJlbiUszWxpxuvnHixnVTh7_HHmP1gj5xszzzzzozfLHsreCG4aD7sigWgKHlZF1wWnDfPsmtRN21edp18frlv2qvsVYw7zkXbSf4yu6o2nSBcXGd_HqwBxxbv5hFZRIc6WT8xO51jufZTCt45NGzBKVkHR2A7W0OhfmUm2MVOW7YPGOMckLAQ58hAp5mke29W9oR2O6SD6oDg0rAymDCmAZP9TSowGTaiHmCyGpxbL50oZ_w2fmS3LBDkxyOug4_RUxuWggX3OnvxCC7im_N5k_388vnh7lt-_-Pr97vb-1yXlUw59Ai66ctNIyS0wGspG93SE0zVtL3gJdL_dMgBjK550wlRcail6XSlKyGrm-z9SXcf_K-ZxlejjRqdo138HFXFWyFFXW5aQsUJPY4a8FHtgx0hrEpwdfBO7RR5pw7eKS4VmUE1787ycz-iuVT8M4uATycAacnFYlBRW5w0GhvINmW8_Y_8X1xQr6c</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Donati, Pablo A.</creator><creator>Tarragona, Lisa</creator><creator>Araos, Joaquín</creator><creator>Zaccagnini, Andrea C.</creator><creator>Díaz, Alfredo</creator><creator>Nigro, Nestor</creator><creator>Sández, Ignacio</creator><creator>Plotnikow, Gustavo</creator><creator>Staffieri, Francesco</creator><creator>Otero, Pablo E.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0115-870X</orcidid><orcidid>https://orcid.org/0000-0002-9805-9769</orcidid><orcidid>https://orcid.org/0000-0002-0901-7269</orcidid><orcidid>https://orcid.org/0000-0003-2605-5686</orcidid></search><sort><creationdate>20240901</creationdate><title>Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial</title><author>Donati, Pablo A. ; Tarragona, Lisa ; Araos, Joaquín ; Zaccagnini, Andrea C. ; Díaz, Alfredo ; Nigro, Nestor ; Sández, Ignacio ; Plotnikow, Gustavo ; Staffieri, Francesco ; Otero, Pablo E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-abeac6b28615a7a04556c7286ad367b102e1799e0aadc40691130a45d9c3c3153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>gas exchange</topic><topic>lung volume</topic><topic>mechanical ventilation</topic><topic>respiratory mechanics</topic><topic>tidal volume adjusting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donati, Pablo A.</creatorcontrib><creatorcontrib>Tarragona, Lisa</creatorcontrib><creatorcontrib>Araos, Joaquín</creatorcontrib><creatorcontrib>Zaccagnini, Andrea C.</creatorcontrib><creatorcontrib>Díaz, Alfredo</creatorcontrib><creatorcontrib>Nigro, Nestor</creatorcontrib><creatorcontrib>Sández, Ignacio</creatorcontrib><creatorcontrib>Plotnikow, Gustavo</creatorcontrib><creatorcontrib>Staffieri, Francesco</creatorcontrib><creatorcontrib>Otero, Pablo E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Veterinary anaesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donati, Pablo A.</au><au>Tarragona, Lisa</au><au>Araos, Joaquín</au><au>Zaccagnini, Andrea C.</au><au>Díaz, Alfredo</au><au>Nigro, Nestor</au><au>Sández, Ignacio</au><au>Plotnikow, Gustavo</au><au>Staffieri, Francesco</au><au>Otero, Pablo E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial</atitle><jtitle>Veterinary anaesthesia and analgesia</jtitle><addtitle>Vet Anaesth Analg</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>51</volume><issue>5</issue><spage>408</spage><epage>416</epage><pages>408-416</pages><issn>1467-2987</issn><issn>1467-2995</issn><eissn>1467-2995</eissn><abstract>To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe′CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔPaw) guided. Randomized, nonblinded, crossover, clinical trial. A total of 19 client-owned dogs anesthetized for castration and ovariohysterectomy. After a stable 10 minute baseline, each dog was mechanically ventilated with a VT selection strategy, randomized to a constant VT of 15 mL kg–1 of actual body mass (VTBW) or ΔPaw-guided VT (VTΔP) of 7–8 cmH2O. Both strategies used an inspiratory time of 1 second, 20% end-inspiratory pause, 4 cmH2O positive end-expiratory pressure and fraction of inspired oxygen of 0.4. Respiratory frequency was adjusted to maintain Pe′CO2 between 35 and 40 mmHg. Respiratory mechanics, arterial blood gases and Pe′CO2/PaCO2 were assessed. Continuous variables are presented as mean ± SD or median (interquartile range; quartiles 1–3), depending on distribution, and compared with Wilcoxon signed-rank tests. The VT was significantly higher in dogs ventilated with VTΔP than with VTBW strategy (17.20 ± 4.04 versus 15.03 ± 0.60 mL kg–1, p = 0.036). CstRS was significantly higher with VTΔP than with VTBW strategy [2.47 (1.86–2.86) versus 2.25 (1.79–2.58) mL cmH2O−1 kg–1, p = 0.011]. There were no differences in Pe′CO2/PaCO2 between VTΔP and VTBW strategies (0.94 ± 0.06 versus 0.92 ± 0.06, p = 0.094). No discernible difference in ΔPaw was noted between the strategies. While no apparent difference was observed in the Pe′CO2/PaCO2 between the VT selection strategies employed, CstRS significantly increased during the VTΔP approach. A future trial should explore if VTΔP improves perioperative gas exchange and prevents lung damage.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38910061</pmid><doi>10.1016/j.vaa.2024.05.006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0115-870X</orcidid><orcidid>https://orcid.org/0000-0002-9805-9769</orcidid><orcidid>https://orcid.org/0000-0002-0901-7269</orcidid><orcidid>https://orcid.org/0000-0003-2605-5686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1467-2987
ispartof Veterinary anaesthesia and analgesia, 2024-09, Vol.51 (5), p.408-416
issn 1467-2987
1467-2995
1467-2995
language eng
recordid cdi_proquest_miscellaneous_3071514287
source Alma/SFX Local Collection
subjects gas exchange
lung volume
mechanical ventilation
respiratory mechanics
tidal volume adjusting
title Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tidal%20volume%20selection%20in%20volume-controlled%20ventilation%20guided%20by%20driving%20pressure%20versus%20actual%20body%20weight%20in%20healthy%20anesthetized%20and%20mechanically%20ventilated%20dogs:%20A%20randomized%20crossover%20trial&rft.jtitle=Veterinary%20anaesthesia%20and%20analgesia&rft.au=Donati,%20Pablo%20A.&rft.date=2024-09-01&rft.volume=51&rft.issue=5&rft.spage=408&rft.epage=416&rft.pages=408-416&rft.issn=1467-2987&rft.eissn=1467-2995&rft_id=info:doi/10.1016/j.vaa.2024.05.006&rft_dat=%3Cproquest_cross%3E3071514287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071514287&rft_id=info:pmid/38910061&rft_els_id=S1467298724000837&rfr_iscdi=true